Ti-10V-2Fe-3Al alloy with fine-grainedβphases was fabricated by friction stir processing with opti-mized processing parameters.The superplastic behavior of the specimens was investigated by tensile deformation at dif...Ti-10V-2Fe-3Al alloy with fine-grainedβphases was fabricated by friction stir processing with opti-mized processing parameters.The superplastic behavior of the specimens was investigated by tensile deformation at different strain rates and temperatures,and an optimal superplastic elongation of 634%was achieved at 700℃ and 3×10^(-4)/s.An annealing treatment at 650℃ for 60 min showed a mi-crostructure withαprecipitates distributed in theβmatrix in the friction stir specimen.Such pre-heat treatment improves the superplasticity of the specimen,achieving an elongation of up to 807%at 750℃ and 3×10^(-4)/s.The influences of tensile temperatures and strain rates on the microstructural evolution,such as grain size variation,grain morphology,and phase transformations,were discussed.The super-plastic deformation behavior of fine-grained Ti-10V-2Fe-3Al alloy is controlled by grain boundary sliding and accompanied by dynamic phase transformation and recrystallization.展开更多
The grain boundary diffusion process(GBDP)has proven to be an effective method for enhancing the coercivity of sintered Nd-Fe-B magnets.However,the limited diffusion depth and thicker shell struc-ture have impeded the...The grain boundary diffusion process(GBDP)has proven to be an effective method for enhancing the coercivity of sintered Nd-Fe-B magnets.However,the limited diffusion depth and thicker shell struc-ture have impeded the further development of magnetic properties.Currently,the primary debates re-garding the mechanism of GBDP with Tb revolve around the dissolution-solidification mechanism and the atomic substitution mechanism.To clarify this mechanism,the microstructure evolution of sintered Nd-Fe-B magnets during the heating process of GBDP has been systematically studied by quenching at different tem peratures.In this study,it was found that the formation of TbFe_(2) phase is related to the dis-solution of _(2)Fe_(14)B grains during GBDP with Tb.The theory of mixing heat and phase separation further confirms that the Nd_(2)Fe_(14)B phase dissolves to form a mixed phase of Nd and TbFe_(2),which then solidifies into the(Nd,Tb)_(2)Fe_(14)B phase.Based on the discovery of the TbFe_(2) phase,the dissolution-solidification mechanism is considered the primary mechanism for GBDP.This is supported by the elemental content of the two typical core-shell structures observed.展开更多
Estimating the multi-year average air-sea CO_(2) flux over a large area usually involves the use of monthly mean variables from the atmosphere and ocean.Ignoring sub-monthly processes will blur the oceanic carbon cycl...Estimating the multi-year average air-sea CO_(2) flux over a large area usually involves the use of monthly mean variables from the atmosphere and ocean.Ignoring sub-monthly processes will blur the oceanic carbon cycle,especially when the synoptic and sub-seasonal scale processes are significant,like in the South China Sea(SCS).Based on an empirical relationship between the partial pressure of CO_(2) in water and the sea surface temperature(SST),we recalculated the air-sea CO_(2) flux of the SCS with daily products of atmospheric reanalysis and SST.Our results show that the sub-monthly process contributes 10%of the total CO_(2) flux of the SCS and can even alter the sign of the CO_(2) flux in the spring.In the near-surface coupling process,intramonthly variations in surface winds play the dominant role,except in regions with significant ocean eddies.The co-spectrum analysis of SST and wind speed reveals the most essential oscillation of>20 days.Therefore,a product of the sea surface environment for 10-day intervals can better estimate the air-sea CO_(2) flux over the SCS than monthly data.展开更多
To solve the problems of deformation,micro-cracks,and residual tensile stress in laser cladding coatings,the technique of laser cladding with Fe-based memory alloy can be considered.However,the process of in-situ synt...To solve the problems of deformation,micro-cracks,and residual tensile stress in laser cladding coatings,the technique of laser cladding with Fe-based memory alloy can be considered.However,the process of in-situ synthesis of Fe-based memory alloy coatings is extremely complex.At present,there is no clear guidance scheme for its preparation process,which limits its promotion and application to some extent.Therefore,in this study,response surface methodology(RSM)was used to model the response surface between the target values and the cladding process parameters.The NSGA-2 algorithm was employed to optimize the process parameters.The results indicate that the composite optimization method consisting of RSM and the NSGA-2 algorithm can establish a more accurate model,with an error of less than 4.5%between the predicted and actual values.Based on this established model,the optimal scheme for process parameters corresponding to different target results can be rapidly obtained.The prepared coating exhibits a uniform structure,with no defects such as pores,cracks,and deformation.The surface roughness and microhardness of the coating are enhanced,the shaping quality of the coating is effectively improved,and the electrochemical corrosion performance of the coating in 3.5%NaCl solution is obviously better than that of the substrate,providing an important guide for engineering applications.展开更多
Low-salinity water(LSW)and CO_(2) could be combined to perform better in a hydrocarbon reservoir due to their synergistic advantages for enhanced oil recovery(EOR);however,its microscopic recovery mechanisms have not ...Low-salinity water(LSW)and CO_(2) could be combined to perform better in a hydrocarbon reservoir due to their synergistic advantages for enhanced oil recovery(EOR);however,its microscopic recovery mechanisms have not been well understood due to the nature of these two fluids and their physical reactions in the presence of reservoir fluids and porous media.In this work,well-designed and inte-grated experiments have been performed for the first time to characterize the in-situ formation of micro-dispersions and identify their EOR roles during a LSW-alternating-CO_(2)(CO_(2)-LSWAG)process under various conditions.Firstly,by measuring water concentration and performing the Fourier transform infrared spectroscopy(FT-IR)analysis,the in-situ formation of micro-dispersions induced by polar and acidic materials was identified.Then,displacement experiments combining with nuclear magnetic resonance(NMR)analysis were performed with two crude oil samples,during which wettability,interfacial tension(IFT),CO_(2) dissolution,and CO_(2) diffusion were quantified.During a CO_(2)-LSWAG pro-cess,the in-situ formed micro-dispersions dictate the oil recovery,while the presence of clay minerals,electrical double-layer(EDL)expansion and multiple ion exchange(MIE)are found to contribute less.Such formed micro-dispersions are induced by CO_(2) via diffusion to mobilize the CO_(2)-diluted oil,alter the rock wettability towards more water-wet,and minimize the density contrast between crude oil and water.展开更多
The alloying process of Mg-La in NaCl-KCl-MgCl_(2)-LaCl_(3)(NKML)melts during electroreduction was elucidated using electrochemical techniques and deep potential molecular dynamics(DPMD)simulations.In the NKML system,...The alloying process of Mg-La in NaCl-KCl-MgCl_(2)-LaCl_(3)(NKML)melts during electroreduction was elucidated using electrochemical techniques and deep potential molecular dynamics(DPMD)simulations.In the NKML system,the Mg^(2+)/La^(3+)electrodeposition on the tungsten(W)electrode at 973 K was found to be a one-step process.The nucleation of metal ions on the electrode surface followed an instantaneous nucleation mode and was not influenced by the alloying process.The redox potential and underpotential deposition behavior of the metal ions in the NKML system were accurately predicted by the DPMD simulations,confirming the alloying process of the Mg-La.Additionally,scanning electron microscopy with energy dispersive spectroscopy(SEM-EDS)analysis results confirmed that the cathodic deposits consisted of a bright phase and a dark phase,corresponding to the Mg-La alloys and Mg,respectively.The distribution of electrolytic products suggests that the cathodic deposit initially favors the Mg phase,with the Mg-La alloy forming more easily when the Mg source in the melt is depleted.展开更多
[Objectives] This study was conducted to solve the prominent problems in the treatment of domestic sewage in southern rural areas of China. [Methods] An integrated process treatment mode of anaerobic/anoxic/aerobic mo...[Objectives] This study was conducted to solve the prominent problems in the treatment of domestic sewage in southern rural areas of China. [Methods] An integrated process treatment mode of anaerobic/anoxic/aerobic moving bed biofilm reactor (A 2O-MBBR) was proposed to analyze and study its operating effect and influencing factors. [Results] The A^(2)O-MBBR mode had good COD removal efficiency and nitrogen and phosphorus removal performance, and the water quality index of the effluent met the Class A standard of GB181918-2002. This mode is suitable for treating rural domestic sewage, and has high treatment effects in different operating periods. In spring, the average removal rates of COD, NH_(4)^(+)-N, TN, TP and SS reached (83.53 ± 2.15)%, (89.44 ± 4.97)%, (67.36±18.53)%, (88.22±11.21)% and (91.73±2.25)%, respectively;In the autumn period, the average removal rates of COD, NH_(4)^(+)-N, TN, TP and SS were (83.49±2.64)%, (89.26±9.19)%, (66.05±17.00)%, (87.48±9.68)%, and (91.13±2.35)%. [Conclusions] This study provides theoretical reference and technical support for the popularization and application of A^(2)O-MBBR integrated process.展开更多
Reducing CO_(2)emissions of the iron and steel industry,a typical heavy CO_(2)-emitting sector is the only way that must be passed to achieve the‘dual-carbon’goal,especially in China.In previous studies,however,it i...Reducing CO_(2)emissions of the iron and steel industry,a typical heavy CO_(2)-emitting sector is the only way that must be passed to achieve the‘dual-carbon’goal,especially in China.In previous studies,however,it is still unknown what is the difference between blast furnace basic oxygen furnace(BF-BOF),scrap-electric furnace(scrap-EF)and hydrogen metallurgy process.The quantitative research on the key factors affecting CO_(2)emissions is insufficient There is also a lack of research on the prediction of CO_(2)emissions by adjusting industria structure.Based on material flow analysis,this study establishes carbon flow diagrams o three processes,and then analyze the key factors affecting CO_(2)emissions.CO_(2)emissions of the iron and steel industry in the future is predicted by adjusting industrial structure The results show that:(1)The CO_(2)emissions of BF-BOF,scrap-EF and hydrogen metallurgy process in a site are 1417.26,542.93 and 1166.52 kg,respectively.(2)By increasing pellet ratio in blast furnace,scrap ratio in electric furnace,etc.,can effectively reduce CO_(2)emissions(3)Reducing the crude steel output is the most effective CO_(2)reduction measure.There is still 5.15×10^(8)-6.17×10^(8) tons of CO_(2)that needs to be reduced by additional measures.展开更多
基金financially supported by the National Natural Science Foundation of China(No.52105373)the China Scholarship Council(No.202106020094).
文摘Ti-10V-2Fe-3Al alloy with fine-grainedβphases was fabricated by friction stir processing with opti-mized processing parameters.The superplastic behavior of the specimens was investigated by tensile deformation at different strain rates and temperatures,and an optimal superplastic elongation of 634%was achieved at 700℃ and 3×10^(-4)/s.An annealing treatment at 650℃ for 60 min showed a mi-crostructure withαprecipitates distributed in theβmatrix in the friction stir specimen.Such pre-heat treatment improves the superplasticity of the specimen,achieving an elongation of up to 807%at 750℃ and 3×10^(-4)/s.The influences of tensile temperatures and strain rates on the microstructural evolution,such as grain size variation,grain morphology,and phase transformations,were discussed.The super-plastic deformation behavior of fine-grained Ti-10V-2Fe-3Al alloy is controlled by grain boundary sliding and accompanied by dynamic phase transformation and recrystallization.
基金supported by the National Key Research and Development Program of China(2022YFB3505503)the National Natural Science Foundation of China(52201230)+2 种基金the Key R&D Program of Shandong Province(2022CXGC020307)the China Postdoctoral Science Foundation(2022M71204)the Beijing NOVA Program(Z211100002121092).
文摘The grain boundary diffusion process(GBDP)has proven to be an effective method for enhancing the coercivity of sintered Nd-Fe-B magnets.However,the limited diffusion depth and thicker shell struc-ture have impeded the further development of magnetic properties.Currently,the primary debates re-garding the mechanism of GBDP with Tb revolve around the dissolution-solidification mechanism and the atomic substitution mechanism.To clarify this mechanism,the microstructure evolution of sintered Nd-Fe-B magnets during the heating process of GBDP has been systematically studied by quenching at different tem peratures.In this study,it was found that the formation of TbFe_(2) phase is related to the dis-solution of _(2)Fe_(14)B grains during GBDP with Tb.The theory of mixing heat and phase separation further confirms that the Nd_(2)Fe_(14)B phase dissolves to form a mixed phase of Nd and TbFe_(2),which then solidifies into the(Nd,Tb)_(2)Fe_(14)B phase.Based on the discovery of the TbFe_(2) phase,the dissolution-solidification mechanism is considered the primary mechanism for GBDP.This is supported by the elemental content of the two typical core-shell structures observed.
基金supported by the National Key Research and Development Program of China (Grant No. 2023YFF0805502)the Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (Grant No. SML2022SP401)+1 种基金the Ocean Negative Carbon Emissions (ONCE) Programthe National Natural Science Foundation of China (Grant No. 42305078)
文摘Estimating the multi-year average air-sea CO_(2) flux over a large area usually involves the use of monthly mean variables from the atmosphere and ocean.Ignoring sub-monthly processes will blur the oceanic carbon cycle,especially when the synoptic and sub-seasonal scale processes are significant,like in the South China Sea(SCS).Based on an empirical relationship between the partial pressure of CO_(2) in water and the sea surface temperature(SST),we recalculated the air-sea CO_(2) flux of the SCS with daily products of atmospheric reanalysis and SST.Our results show that the sub-monthly process contributes 10%of the total CO_(2) flux of the SCS and can even alter the sign of the CO_(2) flux in the spring.In the near-surface coupling process,intramonthly variations in surface winds play the dominant role,except in regions with significant ocean eddies.The co-spectrum analysis of SST and wind speed reveals the most essential oscillation of>20 days.Therefore,a product of the sea surface environment for 10-day intervals can better estimate the air-sea CO_(2) flux over the SCS than monthly data.
基金financial supports from the National Natural Science Foundation of China-Youth Project(51801076)the Provincial Colleges and Universities Natural Science Research Project of Jiangsu Province(18KJB430009)+1 种基金the Postdoctoral Research Support Project of Jiangsu Province(1601055C)the Senior Talents Research Startup of Jiangsu University(14JDG126)。
文摘To solve the problems of deformation,micro-cracks,and residual tensile stress in laser cladding coatings,the technique of laser cladding with Fe-based memory alloy can be considered.However,the process of in-situ synthesis of Fe-based memory alloy coatings is extremely complex.At present,there is no clear guidance scheme for its preparation process,which limits its promotion and application to some extent.Therefore,in this study,response surface methodology(RSM)was used to model the response surface between the target values and the cladding process parameters.The NSGA-2 algorithm was employed to optimize the process parameters.The results indicate that the composite optimization method consisting of RSM and the NSGA-2 algorithm can establish a more accurate model,with an error of less than 4.5%between the predicted and actual values.Based on this established model,the optimal scheme for process parameters corresponding to different target results can be rapidly obtained.The prepared coating exhibits a uniform structure,with no defects such as pores,cracks,and deformation.The surface roughness and microhardness of the coating are enhanced,the shaping quality of the coating is effectively improved,and the electrochemical corrosion performance of the coating in 3.5%NaCl solution is obviously better than that of the substrate,providing an important guide for engineering applications.
基金support by The CO_(2) Flooding and Storage Safety Monitoring Technology(Grant 2023YFB4104200)The Dynamic Evolution of Marine CO_(2) Geological Sequestration Bodies and The Mechanism of Sequestration Efficiency Enhancement(Grant U23B2090)The Efficient Development Technology and Demonstration Project of Offshore CO_(2) Flooding(Grant KJGG-2022-12-CCUS-0203).
文摘Low-salinity water(LSW)and CO_(2) could be combined to perform better in a hydrocarbon reservoir due to their synergistic advantages for enhanced oil recovery(EOR);however,its microscopic recovery mechanisms have not been well understood due to the nature of these two fluids and their physical reactions in the presence of reservoir fluids and porous media.In this work,well-designed and inte-grated experiments have been performed for the first time to characterize the in-situ formation of micro-dispersions and identify their EOR roles during a LSW-alternating-CO_(2)(CO_(2)-LSWAG)process under various conditions.Firstly,by measuring water concentration and performing the Fourier transform infrared spectroscopy(FT-IR)analysis,the in-situ formation of micro-dispersions induced by polar and acidic materials was identified.Then,displacement experiments combining with nuclear magnetic resonance(NMR)analysis were performed with two crude oil samples,during which wettability,interfacial tension(IFT),CO_(2) dissolution,and CO_(2) diffusion were quantified.During a CO_(2)-LSWAG pro-cess,the in-situ formed micro-dispersions dictate the oil recovery,while the presence of clay minerals,electrical double-layer(EDL)expansion and multiple ion exchange(MIE)are found to contribute less.Such formed micro-dispersions are induced by CO_(2) via diffusion to mobilize the CO_(2)-diluted oil,alter the rock wettability towards more water-wet,and minimize the density contrast between crude oil and water.
基金support from the National Natural Science Foundation of China(No.U20A20147).
文摘The alloying process of Mg-La in NaCl-KCl-MgCl_(2)-LaCl_(3)(NKML)melts during electroreduction was elucidated using electrochemical techniques and deep potential molecular dynamics(DPMD)simulations.In the NKML system,the Mg^(2+)/La^(3+)electrodeposition on the tungsten(W)electrode at 973 K was found to be a one-step process.The nucleation of metal ions on the electrode surface followed an instantaneous nucleation mode and was not influenced by the alloying process.The redox potential and underpotential deposition behavior of the metal ions in the NKML system were accurately predicted by the DPMD simulations,confirming the alloying process of the Mg-La.Additionally,scanning electron microscopy with energy dispersive spectroscopy(SEM-EDS)analysis results confirmed that the cathodic deposits consisted of a bright phase and a dark phase,corresponding to the Mg-La alloys and Mg,respectively.The distribution of electrolytic products suggests that the cathodic deposit initially favors the Mg phase,with the Mg-La alloy forming more easily when the Mg source in the melt is depleted.
基金Supported by Scientific Research Project of Hunan Provincial Department of Education(22C0083)。
文摘[Objectives] This study was conducted to solve the prominent problems in the treatment of domestic sewage in southern rural areas of China. [Methods] An integrated process treatment mode of anaerobic/anoxic/aerobic moving bed biofilm reactor (A 2O-MBBR) was proposed to analyze and study its operating effect and influencing factors. [Results] The A^(2)O-MBBR mode had good COD removal efficiency and nitrogen and phosphorus removal performance, and the water quality index of the effluent met the Class A standard of GB181918-2002. This mode is suitable for treating rural domestic sewage, and has high treatment effects in different operating periods. In spring, the average removal rates of COD, NH_(4)^(+)-N, TN, TP and SS reached (83.53 ± 2.15)%, (89.44 ± 4.97)%, (67.36±18.53)%, (88.22±11.21)% and (91.73±2.25)%, respectively;In the autumn period, the average removal rates of COD, NH_(4)^(+)-N, TN, TP and SS were (83.49±2.64)%, (89.26±9.19)%, (66.05±17.00)%, (87.48±9.68)%, and (91.13±2.35)%. [Conclusions] This study provides theoretical reference and technical support for the popularization and application of A^(2)O-MBBR integrated process.
基金supported by the National Natural Science Foundation of China(No.52270177)the Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC001)the Key R&D Plan of Liaoning Province(No.2021JH2/10300103)。
文摘Reducing CO_(2)emissions of the iron and steel industry,a typical heavy CO_(2)-emitting sector is the only way that must be passed to achieve the‘dual-carbon’goal,especially in China.In previous studies,however,it is still unknown what is the difference between blast furnace basic oxygen furnace(BF-BOF),scrap-electric furnace(scrap-EF)and hydrogen metallurgy process.The quantitative research on the key factors affecting CO_(2)emissions is insufficient There is also a lack of research on the prediction of CO_(2)emissions by adjusting industria structure.Based on material flow analysis,this study establishes carbon flow diagrams o three processes,and then analyze the key factors affecting CO_(2)emissions.CO_(2)emissions of the iron and steel industry in the future is predicted by adjusting industrial structure The results show that:(1)The CO_(2)emissions of BF-BOF,scrap-EF and hydrogen metallurgy process in a site are 1417.26,542.93 and 1166.52 kg,respectively.(2)By increasing pellet ratio in blast furnace,scrap ratio in electric furnace,etc.,can effectively reduce CO_(2)emissions(3)Reducing the crude steel output is the most effective CO_(2)reduction measure.There is still 5.15×10^(8)-6.17×10^(8) tons of CO_(2)that needs to be reduced by additional measures.