期刊文献+
共找到5,919篇文章
< 1 2 250 >
每页显示 20 50 100
An effective deep-learning prediction of Arctic sea-ice concentration based on the U-Net model
1
作者 Yifan Xie Ke Fan +2 位作者 Hongqing Yang Yi Fan Shengping He 《Atmospheric and Oceanic Science Letters》 2026年第1期34-40,共7页
Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiote... Current shipping,tourism,and resource development requirements call for more accurate predictions of the Arctic sea-ice concentration(SIC).However,due to the complex physical processes involved,predicting the spatiotemporal distribution of Arctic SIC is more challenging than predicting its total extent.In this study,spatiotemporal prediction models for monthly Arctic SIC at 1-to 3-month leads are developed based on U-Net-an effective convolutional deep-learning approach.Based on explicit Arctic sea-ice-atmosphere interactions,11 variables associated with Arctic sea-ice variations are selected as predictors,including observed Arctic SIC,atmospheric,oceanic,and heat flux variables at 1-to 3-month leads.The prediction skills for the monthly Arctic SIC of the test set(from January 2018 to December 2022)are evaluated by examining the mean absolute error(MAE)and binary accuracy(BA).Results showed that the U-Net model had lower MAE and higher BA for Arctic SIC compared to two dynamic climate prediction systems(CFSv2 and NorCPM).By analyzing the relative importance of each predictor,the prediction accuracy relies more on the SIC at the 1-month lead,but on the surface net solar radiation flux at 2-to 3-month leads.However,dynamic models show limited prediction skills for surface net solar radiation flux and other physical processes,especially in autumn.Therefore,the U-Net model can be used to capture the connections among these key physical processes associated with Arctic sea ice and thus offers a significant advantage in predicting Arctic SIC. 展开更多
关键词 Arctic sea-ice concentration Deep-learning prediction U-net model CFSv2 NorCPM
在线阅读 下载PDF
基于改进U^(2)-Net的摇床精矿带图像分割方法
2
作者 刘惠中 邹起华 《传感器与微系统》 北大核心 2025年第5期124-128,共5页
为提升选矿摇床的自动化水平,提出一种基于改进U^(2)-Net的摇床精矿带特征提取算法。首先,利用限制对比度自适应直方图均衡化和自适应Gamma校正对图像进行预处理;然后,在U^(2)-Net的基础上,引入注意力(Attention)机制以突出摇床精矿带... 为提升选矿摇床的自动化水平,提出一种基于改进U^(2)-Net的摇床精矿带特征提取算法。首先,利用限制对比度自适应直方图均衡化和自适应Gamma校正对图像进行预处理;然后,在U^(2)-Net的基础上,引入注意力(Attention)机制以突出摇床精矿带形状、边缘等显著特征;同时,使用特征融合模块(FFM)从不同角度提取图像的上下文信息以关注更多的边缘细节信息,并对通道信息赋予了权重以突出显著特征。经实验测试表明改进后的方法优于U^(2)-Net原始算法,平均交并比达到98.29%,平均像素精度达到99.78%,查准率达到98.86%;相比于原始算法,平均交并比提升0.39%,平均像素精度提升0.42%,查准率提升0.54%,取得较好分割效果。 展开更多
关键词 选矿摇床 深度学习 U^(2)-net 注意力机制 特征融合
在线阅读 下载PDF
文物三维重建中应用改进U^(2)-Net的环境噪声处理方法
3
作者 杨鹏程 王嘉豪 +1 位作者 朱婧怡 崔嘉宝 《西安工程大学学报》 2025年第2期102-108,共7页
在实景采集图像数据进行三维重建时,往往难以避免环境噪声干扰,影响建模的质量和精度,因此需要处理相关噪声以准确提取文物主体特征。针对这一问题,基于改进U^(2)-Net神经网络对校园内青铜雕塑进行了多视角的三维重建分析。在U^(2)-Net... 在实景采集图像数据进行三维重建时,往往难以避免环境噪声干扰,影响建模的质量和精度,因此需要处理相关噪声以准确提取文物主体特征。针对这一问题,基于改进U^(2)-Net神经网络对校园内青铜雕塑进行了多视角的三维重建分析。在U^(2)-Net神经网络中添加注意力机制以提高网络对文物主体的分割精度,从而获取只包含文物主体特征的图像,并且对3处不同环境下的文物进行分割;利用单目多视角三维重建法,对经过前期处理的图像进行建模。实验结果表明:改进U^(2)-Net神经网络对文物主体特征的分割精度更高,且适用于多样性的环境噪声处理,经处理的图像在三维建模过程中,重投影误差减少约25%,均方根投影误差减少到原来的2/3,建模时间共减少了25%。 展开更多
关键词 文物数字化 三维重建 图像去噪 U^(2)-net 多视角三维重建
在线阅读 下载PDF
基于U^(2)-Net和CBAM融合注意力的双模态睡眠分期研究 被引量:1
4
作者 赵倩 李锦 +2 位作者 凤飞龙 强宁 胡静 《陕西师范大学学报(自然科学版)》 北大核心 2025年第1期1-11,共11页
针对当前自动睡眠分期方法存在的难点问题,提出了一种结合U^(2)-Net和CBAM融合注意力对EEG-ECG双模态信号进行自动睡眠分期的方法。首先,采用MIT-BIH公开数据集中的EEG-ECG信号进行预处理;然后,利用添加了多尺度特征提取模块的U^(2)-Ne... 针对当前自动睡眠分期方法存在的难点问题,提出了一种结合U^(2)-Net和CBAM融合注意力对EEG-ECG双模态信号进行自动睡眠分期的方法。首先,采用MIT-BIH公开数据集中的EEG-ECG信号进行预处理;然后,利用添加了多尺度特征提取模块的U^(2)-Net网络并行提取EEG和ECG中的波形特征;其次,利用CBAM融合注意力对全部特征进行权重分配;最后,使用Softmax激活函数对睡眠时期进行六分类。结果表明:基于U^(2)-Net和CBAM融合注意力模型进行睡眠分期时,使用ECG单模态信号的六分类总体准确率为80.2%,F1分数为75.3%;使用EEG单模态信号的六分类总体准确率为85.8%,F1分数为81.7%;使用EEG-ECG双模态信号的六分类总体准确率为90.4%,F1分数为85.6%。提出的双模态睡眠分期模型是可行有效的,并且为自动睡眠分期提供了一种新的思路。 展开更多
关键词 自动睡眠分期 EEG-ECG双模态信号 U^(2)-net网络 CBAM融合注意力
在线阅读 下载PDF
基于24Model的动火作业事故致因文本挖掘 被引量:1
5
作者 牛茂辉 李威君 +1 位作者 刘音 王璐 《中国安全科学学报》 北大核心 2025年第3期151-158,共8页
为探究工业动火作业事故的根源,提出一种基于“2-4”模型(24Model)的文本挖掘方法。首先,收集整理220篇动火作业事故报告,并作为数据集,构建基于来自变换器的双向编码器表征量(BERT)的24Model分类器,使用预训练模型训练和评估事故报告... 为探究工业动火作业事故的根源,提出一种基于“2-4”模型(24Model)的文本挖掘方法。首先,收集整理220篇动火作业事故报告,并作为数据集,构建基于来自变换器的双向编码器表征量(BERT)的24Model分类器,使用预训练模型训练和评估事故报告数据集,构建分类模型;然后,通过基于BERT的关键字提取算法(KeyBERT)和词频-逆文档频率(TF-IDF)算法的组合权重,结合24Model框架,建立动火作业事故文本关键词指标体系;最后,通过文本挖掘关键词之间的网络共现关系,分析得到事故致因之间的相互关联。结果显示,基于BERT的24Model分类器模型能够系统准确地判定动火作业事故致因类别,通过组合权重筛选得到4个层级关键词指标体系,其中安全管理体系的权重最大,结合共现网络分析得到动火作业事故的7项关键致因。 展开更多
关键词 2-4”模型(24model) 动火作业 事故致因 文本挖掘 指标体系
原文传递
面向腺体组织病理学图像分割的改进U2-Net模型
6
作者 张正旭 陈庆奎 +1 位作者 付直兵 黄陈 《小型微型计算机系统》 北大核心 2025年第4期914-921,共8页
结直肠癌是全球癌症患病人数当中致死率最高的癌症之一,为提高结直肠腺体的分割准确率,本文把U2-Net引入到医学图像分割领域,并对其改进以提高分割效果.首先,为减弱下采样带来的细节特征丢失和上采样时插值误差,在RSU内部的桥接处引入A... 结直肠癌是全球癌症患病人数当中致死率最高的癌症之一,为提高结直肠腺体的分割准确率,本文把U2-Net引入到医学图像分割领域,并对其改进以提高分割效果.首先,为减弱下采样带来的细节特征丢失和上采样时插值误差,在RSU内部的桥接处引入ASPP模块并且使用深度可分离卷积替换普通卷积以提高有效特征的提取能力同时减少参数量;其次,在外层解码器阶段引入了注意力机制以加强特征间的融合,减少因跳跃连接而丢失的空间信息;最终,把交叉熵损失和Dice相结合作为最终损失函数来解决类不平衡问题.在SJTU_GSFPH数据集与U2-Net相比F1-Score和Dice分别提升了1.43和1.03,HD降低了10.93;在GlaS数据集中与U2-Net相比Dice提升了1.29,HD降低了3.82.实验结果表明,本文方法有效提升了结直肠腺体分割的精准度. 展开更多
关键词 U2-net 结直肠 医学图像分割 DICE
在线阅读 下载PDF
基于U^(2)-Net的岩体内部结构面智能识别研究
7
作者 白万明 赵宇 +2 位作者 刘艳彪 马骏 徐帅 《金属矿山》 北大核心 2025年第4期219-225,共7页
结构面对于岩体力学行为和变形破坏机制具有重要影响。快速精确获取结构面分布特征和参数信息对于深部工程岩体稳定性和灾害孕育机制分析具有重要意义。钻孔摄像是一种岩体内部结构面探测新技术,但对钻孔图像中结构面的识别仍以人工辨... 结构面对于岩体力学行为和变形破坏机制具有重要影响。快速精确获取结构面分布特征和参数信息对于深部工程岩体稳定性和灾害孕育机制分析具有重要意义。钻孔摄像是一种岩体内部结构面探测新技术,但对钻孔图像中结构面的识别仍以人工辨识为主,存在工作量大、处理速度慢与人为误差大等问题。基于此,开展了基于U^(2)-Net卷积神经网络的钻孔图像结构面智能识别研究。首先收集20个钻孔1013张钻孔图像;其次,应用图像翻转、色彩抖动、模糊处理和Mixup等数据扩充方法,将数据集扩充到12421张,建立钻孔摄像数据集,解决结构面分割网络训练过程中样本不足的问题;然后,基于深度学习框架PyTorch,设置学习率0.001,训练批次为4,使用Adam优化器,在训练过程中自适应调整学习率,建立结构面智能识别模型;模型在置信度阈值为0.7时F度量值达到了最大值0.749,在召回率大于0.5范围内精确率最高可达0.85,实现了结构面区域的完整分割。与人工识别方式相比,在重合度50%的条件下,U^(2)-Net网络识别率达到了94.8%,表明该网络具有较高的识别精确率与一定的泛化性。 展开更多
关键词 钻孔摄像 结构面 智能提取 U2-net卷积神经网络
在线阅读 下载PDF
基于DMT-U^(2)-Net和回归算法的爆破眼痕识别及应用
8
作者 凌同华 谢长庚 +2 位作者 曹峰 廖逸轩 袁宇 《铁道科学与工程学报》 北大核心 2025年第9期4248-4259,共12页
隧道光面爆破设计时,往往需要光爆效果作为设计依据,以实现爆破安全施工并提高爆破效率。针对目前光爆眼痕识别过程中存在的现场环境复杂、检测困难等问题,提出基于DMT-U^(2)-Net与self-attention模块的复合算法模型进行爆破眼痕识别。... 隧道光面爆破设计时,往往需要光爆效果作为设计依据,以实现爆破安全施工并提高爆破效率。针对目前光爆眼痕识别过程中存在的现场环境复杂、检测困难等问题,提出基于DMT-U^(2)-Net与self-attention模块的复合算法模型进行爆破眼痕识别。采集爆破工程中常见的爆破眼痕图像样本,并对数据进行增强、三维重建与降噪处理,构建DMT-U^(2)-Net网络模型并改进损失函数对眼痕图像进行训练,获取DMT-U^(2)-Net眼痕分割模型;将DMT-U^(2)-Net模型处理后的分割图片与三维重建模型进行特征融合,构建基于self-attention模块的回归预测模型对融合特征进行训练,获取眼痕长度回归预测模型;将DMT-U^(2)-Net眼痕分割模型与基准U^(2)-Net,U-Net,DeepLab v3,FCN,LR-ASPP网络模型的眼痕分割结果进行对比,从而评估其训练效果;将回归预测模型与bp,GRU模型进行对比,并对输入参数进行敏感性分析,优化网络参数输入并评估网络训练效果。结果表明,DMT-U^(2)-Net网络模型分割可见眼痕的P_(DSC),P_(pre),P_(rec),P_(mIOU)分别为90.89%,91.11%,91.01%,91.59%,模型大小仅为19.76 MB,相较基准模型缩减88.2%。与其他模型相比,该模型在分割精度和模型大小,都具有较大优势;通过回归预测模型,可以实现对可见眼痕长度的精准预测,模型决定性系数高达0.992,模型大小仅为154.1 KB。将本文复合算法模型应用于隧道光面爆破可见眼痕的识别中,模型展现出较好的识别效果,基本实现了可见眼痕的端到端识别,为隧道的超欠挖识别与智能评价系统打下坚实基础。 展开更多
关键词 光面爆破 眼痕识别 DMT-U^(2)-net网络 self-attention模块 回归预测模型
在线阅读 下载PDF
GPT2-ICC:A data-driven approach for accurate ion channel identification using pre-trained large language models 被引量:1
9
作者 Zihan Zhou Yang Yu +9 位作者 Chengji Yang Leyan Cao Shaoying Zhang Junnan Li Yingnan Zhang Huayun Han Guoliang Shi Qiansen Zhang Juwen Shen Huaiyu Yang 《Journal of Pharmaceutical Analysis》 2025年第8期1800-1809,共10页
Current experimental and computational methods have limitations in accurately and efficiently classifying ion channels within vast protein spaces.Here we have developed a deep learning algorithm,GPT2 Ion Channel Class... Current experimental and computational methods have limitations in accurately and efficiently classifying ion channels within vast protein spaces.Here we have developed a deep learning algorithm,GPT2 Ion Channel Classifier(GPT2-ICC),which effectively distinguishing ion channels from a test set containing approximately 239 times more non-ion-channel proteins.GPT2-ICC integrates representation learning with a large language model(LLM)-based classifier,enabling highly accurate identification of potential ion channels.Several potential ion channels were predicated from the unannotated human proteome,further demonstrating GPT2-ICC’s generalization ability.This study marks a significant advancement in artificial-intelligence-driven ion channel research,highlighting the adaptability and effectiveness of combining representation learning with LLMs to address the challenges of imbalanced protein sequence data.Moreover,it provides a valuable computational tool for uncovering previously uncharacterized ion channels. 展开更多
关键词 Ion channel Artificial intelligence Representation learning GPT2 Protein language model
在线阅读 下载PDF
基于改进U2-Net的指针式仪表读数识别方法
10
作者 李丽 乔逸天 +2 位作者 黄小龙 谢维成 蒋文波 《现代电子技术》 北大核心 2025年第5期169-174,共6页
针对仪表表盘光照不均和几何失真影响仪表关键区域提取、读数识别准确率的问题,提出一种基于改进U2-Net的仪表校正与读数识别方法。首先通过加入坐标注意力机制的U2-Net模型识别并分割出仪表表盘区域,随后采用改进透视变换技术对表盘区... 针对仪表表盘光照不均和几何失真影响仪表关键区域提取、读数识别准确率的问题,提出一种基于改进U2-Net的仪表校正与读数识别方法。首先通过加入坐标注意力机制的U2-Net模型识别并分割出仪表表盘区域,随后采用改进透视变换技术对表盘区域进行几何校正,实现不同形状的仪表几何校正;再引入自适应MSRCR算法对表盘光照不均区域进行光照校正;最后,通过U2-Net对校正后的图像进行指针分割和关键刻度点分割,采用PCA拟合指针所在的直线,得到指针偏转角度并通过角度法计算准确读数。实验结果表明,该方法能够在光照不足或光照过强的情况下有效恢复仪表关键信息区域,并能够有效校正不同形状的倾斜仪表,提升了指针和刻度信息提取的准确度,且读数误差率低于0.89%。 展开更多
关键词 指针式仪表 光照校正 失真校正 U2-net 仪表读数 MSRCR
在线阅读 下载PDF
High-throughput screening of CO_(2) cycloaddition MOF catalyst with an explainable machine learning model
11
作者 Xuefeng Bai Yi Li +3 位作者 Yabo Xie Qiancheng Chen Xin Zhang Jian-Rong Li 《Green Energy & Environment》 SCIE EI CAS 2025年第1期132-138,共7页
The high porosity and tunable chemical functionality of metal-organic frameworks(MOFs)make it a promising catalyst design platform.High-throughput screening of catalytic performance is feasible since the large MOF str... The high porosity and tunable chemical functionality of metal-organic frameworks(MOFs)make it a promising catalyst design platform.High-throughput screening of catalytic performance is feasible since the large MOF structure database is available.In this study,we report a machine learning model for high-throughput screening of MOF catalysts for the CO_(2) cycloaddition reaction.The descriptors for model training were judiciously chosen according to the reaction mechanism,which leads to high accuracy up to 97%for the 75%quantile of the training set as the classification criterion.The feature contribution was further evaluated with SHAP and PDP analysis to provide a certain physical understanding.12,415 hypothetical MOF structures and 100 reported MOFs were evaluated under 100℃ and 1 bar within one day using the model,and 239 potentially efficient catalysts were discovered.Among them,MOF-76(Y)achieved the top performance experimentally among reported MOFs,in good agreement with the prediction. 展开更多
关键词 Metal-organic frameworks High-throughput screening Machine learning Explainable model CO_(2)cycloaddition
在线阅读 下载PDF
基于DCGAN和U^(2)-Net模型的齿轮点蚀辨识
12
作者 刘妤 谭钦宜 古前程 《振动与冲击》 北大核心 2025年第10期301-310,共10页
结合改建的齿轮试验台能够在线获取齿轮工作齿面图像的优势,探讨了基于机器视觉技术实现齿轮点蚀辨识的方法,并开展了试验研究。针对齿轮点蚀样本稀缺,采用深度卷积生成对抗网络(deep convolutional generative adversarial network,DCG... 结合改建的齿轮试验台能够在线获取齿轮工作齿面图像的优势,探讨了基于机器视觉技术实现齿轮点蚀辨识的方法,并开展了试验研究。针对齿轮点蚀样本稀缺,采用深度卷积生成对抗网络(deep convolutional generative adversarial network,DCGAN),实现了样本的多样化、高质量扩增;结合前期研究基础,提取了齿轮的有效工作齿面,实现了齿面倾斜校正和畸变修正;引入ECA注意力机制,改进了U^(2)-Net模型,实现了齿轮点蚀图像感兴趣区域的精确分割;在此基础上,通过统计齿轮历史点蚀率,构建了基于图像信号的齿轮点蚀辨识模型,实现了齿轮点蚀辨识。结果表明:采用机器视觉技术实现齿轮点蚀辨识的方法是可行的,基于DCGAN和U^(2)-Net模型的齿轮点蚀识别准确率达93.56%。研究成果可为齿轮点蚀辨识提供一种更为直接、可靠的方法,对于机械装备的状态监测有一定的参考价值。 展开更多
关键词 齿轮 点蚀 模式识别 深度卷积生成对抗网络(DCGAN) U^(2)-net
在线阅读 下载PDF
基于U_(2)-Net与动态索引旋转卷积的混凝土路面裂缝提取
13
作者 王春艳 王康乐 +1 位作者 姜勇 王祥 《辽宁工程技术大学学报(自然科学版)》 北大核心 2025年第6期746-752,共7页
针对卷积神经网络提取混凝土路面裂缝时,因光照变化、背景复杂及模糊效应导致的精度下降问题,提出一种动态索引旋转卷积(DIRC)方法。该方法基于可变形卷积理论,通过解决偏移量可能超出感受野的问题,增强索引偏移量的有效性。将动态索引... 针对卷积神经网络提取混凝土路面裂缝时,因光照变化、背景复杂及模糊效应导致的精度下降问题,提出一种动态索引旋转卷积(DIRC)方法。该方法基于可变形卷积理论,通过解决偏移量可能超出感受野的问题,增强索引偏移量的有效性。将动态索引旋转卷积(DIRC)引入U^(2)-Net架构,以提升网络对混凝土路面裂缝纹理的识别能力。研究结果表明:在DeepCrack数据集上,DIRC-U^(2)-Net相较于基准U^(2)-Net,F1、Kappa和MIoU指标分别提升了2.40%、1.30%和1.49%;在CrackForest数据集上,上述指标分别提升了8.43%、8.47%和9.13%。对提取结果的可视化分析进一步表明,DIRC模块显著增强了U^(2)-Net模型对光照差异及图像模糊等复杂干扰因素的鲁棒性。研究结论为实现混凝土路面裂缝的精准与稳健提取提供理论依据。 展开更多
关键词 裂缝提取 动态索引旋转卷积 U^(2)-net 可变形卷积 卷积神经网络 道路安全
原文传递
基于24Model与RF算法的冰雪天气高速公路交通事故影响因素研究
14
作者 王俊诚 解学才 孙世梅 《安全》 2025年第11期55-60,共6页
为提升冰雪天气下高速公路的行车安全水平,本文融合事故致因“2-4”模型(24Model)与机器学习方法,构建事故严重程度预测模型并识别关键致因因素。首先,以全国109起冰雪天气高速公路交通事故为样本,基于24Model系统提取15项影响因素,构... 为提升冰雪天气下高速公路的行车安全水平,本文融合事故致因“2-4”模型(24Model)与机器学习方法,构建事故严重程度预测模型并识别关键致因因素。首先,以全国109起冰雪天气高速公路交通事故为样本,基于24Model系统提取15项影响因素,构建适用于机器学习的数据集;然后,对比随机森林(RF)、K近邻与BP神经网络,建立预测模型,并对最优者实施超参数搜索与交叉验证;最后,结合重要度分析,识别影响事故严重程度的关键因素。结果表明:RF模型准确率达到0.8182,且性能最稳定;组织文化缺失为首要致因,驾驶员安全意识不足、低能见度不良天气条件及大型车辆混入亦显著加剧事故严重性。可从优化低能见度路段交通标志与照明设施、完善安全管理体系等方面提出针对性改进对策,为冰雪天气高速公路安全治理提供理论依据与管理参考。 展开更多
关键词 冰雪天气 事故致因“2-4”模型(24model) 事故严重程度 随机森林算法(RF)
在线阅读 下载PDF
基于YOLOv5+U^(2)-Net的指针式表计识别
15
作者 裴利强 廖伟杰 +1 位作者 吕慧媛 魏晓东 《电力安全技术》 2025年第10期41-47,共7页
针对电力生产过程中复杂环境下指针式表计检测与识别过程中存在表盘定位困难和指针、刻度线提取精度低等问题,提出了一种基于YOLOv5+U^(2)-Net的表计识别算法。采用YOLOv5目标检测算法对仪表表盘图像识别检测,通过U^(2)-Net模型对仪表... 针对电力生产过程中复杂环境下指针式表计检测与识别过程中存在表盘定位困难和指针、刻度线提取精度低等问题,提出了一种基于YOLOv5+U^(2)-Net的表计识别算法。采用YOLOv5目标检测算法对仪表表盘图像识别检测,通过U^(2)-Net模型对仪表盘中心面板区域进行分割,并应用透视变换方法对变形的椭圆形表盘面板进行校正,在U^(2)-Net模型中引入混合注意力机制模块(CBAM),利用通道注意力模块(CAM)和空间注意力模块(SAM)增强模型在分割任务中进行盘面刻度线和指针特征提取的能力。试验结果表明,该方法在指针式表计识别检测方面具有明显的优势。 展开更多
关键词 指针式表计识别 YOLOv5算法 U^(2)-net模型 透视变换校正 注意力机制
在线阅读 下载PDF
基于改进U2-Net的小样本病虫害分割算法研究
16
作者 邓惟明 《智慧农业导刊》 2025年第21期35-38,42,共5页
圣女果作为高效经济作物,其产量与品质常受病虫害严重威胁,病虫害区域的精准分割从而定位病害范围是病虫害早期干预、精准防治的核心前提。为解决传统圣女果病虫害分割中小病害区域漏检、边界模糊、分割效率低等问题,该文提出一种融合... 圣女果作为高效经济作物,其产量与品质常受病虫害严重威胁,病虫害区域的精准分割从而定位病害范围是病虫害早期干预、精准防治的核心前提。为解决传统圣女果病虫害分割中小病害区域漏检、边界模糊、分割效率低等问题,该文提出一种融合注意力机制的AttU2-Net分割模型,实现病虫害的精准分割与识别。使用Tomoto-disease数据集进行测试,在U2-Netp模型解码层嵌入轻量化SimAM,利用MSAA机制优化特征融合效果,最后在每层的输出侧加入CBMA注意力模块,从而构建出针对植物病害的分割模型AttU2-Net。最后将其与其他主流分割模型如DeepLabv3、nnU-net等进行定量与定性比较。验证得到AttU2-Net能较为精准地分割出叶片及果实的病害区域,满足农业种植圣女果进程中对作物健康种植的要求。 展开更多
关键词 圣女果病虫害 语义分割 小样本 U2-net 注意力机制
在线阅读 下载PDF
Establishment of a humanized SCA2 mouse model carrying a CAA disruption preventing CAG repeat expansion in pathogenic genes
17
作者 Yao Zhang Yufei Li +7 位作者 Lin Zhang Zhaoqing Li Keqin Lin Kai Huang Zhaoqing Yang Shaohui Ma Hao Sun Xiaochao Zhang 《Animal Models and Experimental Medicine》 2025年第9期1677-1687,共11页
Background:Spinocerebellar ataxia type 2(SCA2)is a neurodegenerative disease marked by significant clinical and genetic heterogeneity,primarily caused by expanded CAG mutations in the ATXN2 gene.The unstable expansion... Background:Spinocerebellar ataxia type 2(SCA2)is a neurodegenerative disease marked by significant clinical and genetic heterogeneity,primarily caused by expanded CAG mutations in the ATXN2 gene.The unstable expansion of CAG repeats disrupts the genetic stability of animal models,which is detrimental to disease research.Methods:In this study,we established a mouse model in which CAG repeats do not undergo microsatellite instability(MSI)across generations.A humanized ATXN2 cDNA with four CAA interruptions within 73 CAG expansions was inserted into the Rosa26 locus of C57BL/6J mice.A 23 CAG control mouse model was also generated to verify ATXN2 integration and expression.Results:In our model,the number of CAG repeats remained stable during transmission,with no CAG repeat expansion observed in 64 parent-to-offspring transmissions.Compared with SCA2-Q23 mice,SCA2-Q73 mice exhibited progressive motor impairment,reduced Purkinje cell count and volume(indicative of cell atrophy),and muscle atrophy.These observations in the mice suggest that the behavioral and neuropathological phenotypes may reflect the features of SCA2 patients.RNA-seq analysis of the gastrocnemius muscle in SCA2-Q73 mice showed significant changes in muscle differentiation and development gene expression at 56 weeks,with no significant differences at 16 weeks compared to SCA2-Q23 mice.The expression level of the Myf6 gene significantly changed in the muscles of aged mice.Conclusion:In summary,the establishment of this model not only provides a stable animal model for studying CAG transmission in SCA2 but also indicates that the lack of long-term neural stimulation leads to muscle atrophy. 展开更多
关键词 ATXN2 CAA interruption genetic stability mouse model SCa2
暂未订购
Comparison of the pathogenicity of multiple SARS-CoV-2 variants in mouse models
18
作者 Qi Lv Ming Liu +10 位作者 Feifei Qi Mingya Liu Fengdi Li Ran Deng Xujian Liang Yanfeng Xu Zhiqi Song Yiwei Yan Shuyue Li Guocui Mou Linlin Bao 《Animal Models and Experimental Medicine》 2025年第7期1302-1312,共11页
Background:New variants of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)continue to drive global epidemics and pose significant health risks.The pathogenicity of these variants evolves under immune press... Background:New variants of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)continue to drive global epidemics and pose significant health risks.The pathogenicity of these variants evolves under immune pressure and host factors.Understanding these changes is crucial for epidemic control and variant research.Methods:Human angiotensin-converting enzyme 2(hACE2)transgenic mice were in-tranasally challenged with the original strain WH-09 and the variants Delta,Beta,and Omicron BA.1,while BALB/c mice were challenged with Omicron subvariants BA.5,BF.7,and XBB.1.To compare the pathogenicity differences among variants,we con-ducted a comprehensive analysis that included clinical symptom observation,meas-urement of viral loads in the trachea and lungs,evaluation of pulmonary pathology,analysis of immune cell infiltration,and quantification of cytokine levels.Results:In hACE2 mice,the Beta variant caused significant weight loss,severe lung inflammation,increased inflammatory and chemotactic factor secretion,greater mac-rophage and neutrophil infiltration in the lungs,and higher viral loads with prolonged shedding duration.In contrast,BA.1 showed a significant reduction in pathogenicity.The BA.5,BF.7,and XBB.1 variants were less pathogenic than the WH-09,Beta,and Delta variants when infected in BALB/c mice.This was evidenced by reduced weight loss,diminished pulmonary pathology,decreased secretion of inflammatory factors and chemokines,reduced macrophage and neutrophil infiltration,as well as lower viral loads in both the trachea and lungs.Conclusion:In hACE2 mice,the Omicron variant demonstrated the lowest pathogenic-ity,while the Beta variant exhibited the highest.Pathogenicity of the Delta variant was comparable to the original WH-09 strain.Among BALB/c mice,Omicron subvari-ants BA.5,BF.7,and XBB.1 showed no statistically significant differences in virulence. 展开更多
关键词 mice model PATHOGENICITY SARS-CoV-2 VARIANTS
暂未订购
Kinetic modeling and multi-objective optimization of an industrial hydrocracking process with an improved SPEA2-PE algorithm
19
作者 Chen Fan Xindong Wang +1 位作者 Gaochao Li Jian Long 《Chinese Journal of Chemical Engineering》 2025年第4期130-146,共17页
Hydrocracking is one of the most important petroleum refining processes that converts heavy oils into gases,naphtha,diesel,and other products through cracking reactions.Multi-objective optimization algorithms can help... Hydrocracking is one of the most important petroleum refining processes that converts heavy oils into gases,naphtha,diesel,and other products through cracking reactions.Multi-objective optimization algorithms can help refining enterprises determine the optimal operating parameters to maximize product quality while ensuring product yield,or to increase product yield while reducing energy consumption.This paper presents a multi-objective optimization scheme for hydrocracking based on an improved SPEA2-PE algorithm,which combines path evolution operator and adaptive step strategy to accelerate the convergence speed and improve the computational accuracy of the algorithm.The reactor model used in this article is simulated based on a twenty-five lumped kinetic model.Through model and test function verification,the proposed optimization scheme exhibits significant advantages in the multiobjective optimization process of hydrocracking. 展开更多
关键词 HYDROCRACKING Multi-objective optimization Improved SPEa2 Kinetic modeling
在线阅读 下载PDF
Simulation of capacitively coupled Ar/O_(2)discharges based on global/equivalent circuit model and an extended reaction set
20
作者 Yi Wang Wan Dong +2 位作者 Yi-Fan Zhang Liu-Qin Song Yuan-Hong Song 《Chinese Physics B》 2025年第8期623-635,共13页
Radio frequency capacitively coupled plasmas(RF CCPs)operated in Ar/O_(2)gas mixtures which are widely adopted in microelectronics,display,and photovoltaic industry,are investigated based on an equivalent circuit mode... Radio frequency capacitively coupled plasmas(RF CCPs)operated in Ar/O_(2)gas mixtures which are widely adopted in microelectronics,display,and photovoltaic industry,are investigated based on an equivalent circuit model coupled with a global model.This study focuses on the effects of singlet metastable molecule O_(2)(b^(1)∑_(8)^(+)),highly excited Herzberg states O_(2)(A^(3)∑_(u)^(+),A^(3)△_(u),c^(1)∑_(u)^(-)),and the negative ion O_(2)^(-),which are usually neglected in simulation studies.Specifically,their impact on particle densities,electronegativity,electron temperature,voltage drop across the sheath,and absorbed power in the discharge is analyzed.The results indicate that O_(2)(b^(1)∑_(8)^(+))and O_(2)^(-)exhibit relatively high densities in argon-oxygen discharges.While O_(2)(A^(3)∑_(u)^(+),A^(3)△_(u),c^(1)∑_(u)^(-))play a critical role in O_(2)b1S+g production,especially at higher pressure.The inclusion of these particles reduces the electronegativity,electron temperature,and key species densities,especially the O^(-)and O^(*)densities.Moreover,the sheath voltage drop,as well as the inductance and resistance of the plasma bulk are enhanced,while the sheath dissipation power and total absorbed power decrease slightly.With the increasing pressure,the influence of these particles on the discharge properties becomes more significant.The study also explores the generation and loss of main neutral species and charged particles within the pressure range of 20 mTorr-100 mTorr(1 Torr=1.33322×10^(2)Pa),offering insights into essential and non-essential reactions for future low-pressure O_(2)and Ar/O_(2)CCP discharge modeling. 展开更多
关键词 Ar/O_(2)CCP discharges reaction set equivalent circuit model global model
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部