Self-assembly of octadecyl mercaptan on gold was investigated by cyclic voltammetry(CV) and electrochemical impedance spectroscopy (EIS). Results of CV experiments show thatthere are no structUral defects exposed dire...Self-assembly of octadecyl mercaptan on gold was investigated by cyclic voltammetry(CV) and electrochemical impedance spectroscopy (EIS). Results of CV experiments show thatthere are no structUral defects exposed directly to the redox couple in solution, but EISexperiments indicate that collapsed sites exist in the monolayer. A method to estimate the degree ofdisorder in the Au/thiol monolayer surface is proposed by using admittance plane plot.展开更多
Although previous studies have demonstrated that transcranial focused ultrasound stimulation protects the ischemic brain,clear criteria for the stimulation time window and intensity are lacking.Electrical impedance to...Although previous studies have demonstrated that transcranial focused ultrasound stimulation protects the ischemic brain,clear criteria for the stimulation time window and intensity are lacking.Electrical impedance tomography enables real-time monitoring of changes in cerebral blood perfusion within the ischemic brain,but investigating the feasibility of using this method to assess post-stroke rehabilitation in vivo remains critical.In this study,ischemic stroke was induced in rats through middle cerebral artery occlusion surgery.Transcranial focused ultrasound stimulation was used to treat the rat model of ischemia,and electrical impedance tomography was used to measure impedance during both the acute stage of ischemia and the rehabilitation stage following the stimulation.Electrical impedance tomography results indicated that cerebral impedance increased after the onset of ischemia and decreased following transcranial focused ultrasound stimulation.Furthermore,the stimulation promoted motor function recovery,reduced cerebral infarction volume in the rat model of ischemic stroke,and induced the expression of brain-derived neurotrophic factor in the ischemic brain.Our results also revealed a significant correlation between the impedance of the ischemic brain post-intervention and improvements in behavioral scores and infarct volume.This study shows that daily administration of transcranial focused ultrasound stimulation for 20 minutes to the ischemic hemisphere 24 hours after cerebral ischemia enhanced motor recovery in a rat model of ischemia.Additionally,our findings indicate that electrical impedance tomography can serve as a valuable tool for quantitatively evaluating rehabilitation after ischemic stroke in vivo.These findings suggest the feasibility of using impedance data collected via electrical impedance tomography to clinically assess the effects of rehabilitatory interventions for patients with ischemic stroke.展开更多
Background:Os Draconis is an important material in traditional Chinese medicine(TCM).However,its market is saturated with counterfeit products,and the limitations of current identification methods pose a serious threa...Background:Os Draconis is an important material in traditional Chinese medicine(TCM).However,its market is saturated with counterfeit products,and the limitations of current identification methods pose a serious threat to clinical effectiveness and drug safety.This study aims to establish a more accurate and comprehensive authentication system for Os Draconis.Methods:A comprehensive approach was employed to analyze authentic Os Draconis,fossilized Os Draconis,counterfeit products,and lab-prepared modern animal bones.The analytical techniques included ^(14)C dating,electron probe microanalysis(EPMA),polarized light microscopy,X-ray diffraction(XRD),inductively coupled plasma mass spectrometry(ICP-MS),and fourier-transform infrared spectroscopy(FTIR).The study focused on examining the microstructural features and micro-area elemental compositions to identify distinguishing characteristics.Results:Physical identification alone was insufficient to reliably distinguish authentic Os Draconis from its counterfeits.XRD analysis revealed that while hydroxyapatite is the main component in all samples,authentic Os Draconis also contains calcium carbonate and quartz,which were absent in counterfeit and lab-prepared samples.FTIR spectra identified the carbonate ion(CO_(3)^(2-))as a characteristic infrared marker for authentic Os Draconis.ICP-MS analysis showed that Ca and P are the major elements,with a notably high content of Lanthanum(La)among rare earth elements in authentic samples.The EPMA results demonstrated that the Ca/P ratio of authentic Os Draconis is distinct,falling between that of fossilized Os Draconis and counterfeit samples.Conclusion:This study successfully identified several precise markers,including the presence of calcium carbonate,the characteristic CO_(3)^(2-)infrared peak,a high La content,and a specific Ca/P ratio,for the accurate and rapid authentication of Os Draconis.Furthermore,the analysis of its natural porous structure,suitable pore size,and surface area suggests that Os Draconis has significant potential as a natural drug carrier.展开更多
Diabetic retinopathy is a prominent cause of blindness in adults,with early retinal ganglion cell loss contributing to visual dysfunction or blindness.In the brain,defects inγ-aminobutyric acid synaptic transmission ...Diabetic retinopathy is a prominent cause of blindness in adults,with early retinal ganglion cell loss contributing to visual dysfunction or blindness.In the brain,defects inγ-aminobutyric acid synaptic transmission are associated with pathophysiological and neurodegenerative disorders,whereas glucagon-like peptide-1 has demonstrated neuroprotective effects.However,it is not yet clear whether diabetes causes alterations in inhibitory input to retinal ganglion cells and whether and how glucagon-like peptide-1 protects against neurodegeneration in the diabetic retina through regulating inhibitory synaptic transmission to retinal ganglion cells.In the present study,we used the patch-clamp technique to recordγ-aminobutyric acid subtype A receptor-mediated miniature inhibitory postsynaptic currents in retinal ganglion cells from streptozotocin-induced diabetes model rats.We found that early diabetes(4 weeks of hyperglycemia)decreased the frequency of GABAergic miniature inhibitory postsynaptic currents in retinal ganglion cells without altering their amplitude,suggesting a reduction in the spontaneous release ofγ-aminobutyric acid to retinal ganglion cells.Topical administration of glucagon-like peptide-1 eyedrops over a period of 2 weeks effectively countered the hyperglycemia-induced downregulation of GABAergic mIPSC frequency,subsequently enhancing the survival of retinal ganglion cells.Concurrently,the protective effects of glucagon-like peptide-1 on retinal ganglion cells in diabetic rats were eliminated by topical administration of exendin-9-39,a specific glucagon-like peptide-1 receptor antagonist,or SR95531,a specific antagonist of theγ-aminobutyric acid subtype A receptor.Furthermore,extracellular perfusion of glucagon-like peptide-1 was found to elevate the frequencies of GABAergic miniature inhibitory postsynaptic currents in both ON-and OFF-type retinal ganglion cells.This elevation was shown to be mediated by activation of the phosphatidylinositol-phospholipase C/inositol 1,4,5-trisphosphate receptor/Ca2+/protein kinase C signaling pathway downstream of glucagon-like peptide-1 receptor activation.Moreover,multielectrode array recordings revealed that glucagon-like peptide-1 functionally augmented the photoresponses of ON-type retinal ganglion cells.Optomotor response tests demonstrated that diabetic rats exhibited reductions in visual acuity and contrast sensitivity that were significantly ameliorated by topical administration of glucagon-like peptide-1.These results suggest that glucagon-like peptide-1 facilitates the release ofγ-aminobutyric acid onto retinal ganglion cells through the activation of glucagon-like peptide-1 receptor,leading to the de-excitation of retinal ganglion cell circuits and the inhibition of excitotoxic processes associated with diabetic retinopathy.Collectively,our findings indicate that theγ-aminobutyric acid system has potential as a therapeutic target for mitigating early-stage diabetic retinopathy.Furthermore,the topical administration of glucagon-like peptide-1 eyedrops represents a non-invasive and effective treatment approach for managing early-stage diabetic retinopathy.展开更多
文摘Self-assembly of octadecyl mercaptan on gold was investigated by cyclic voltammetry(CV) and electrochemical impedance spectroscopy (EIS). Results of CV experiments show thatthere are no structUral defects exposed directly to the redox couple in solution, but EISexperiments indicate that collapsed sites exist in the monolayer. A method to estimate the degree ofdisorder in the Au/thiol monolayer surface is proposed by using admittance plane plot.
基金supported by the Fundamental Research Funds for the Central Universities,Nos.G2021KY05107,G2021KY05101the National Natural Science Foundation of China,Nos.32071316,32211530049+1 种基金the Natural Science Foundation of Shaanxi Province,No.2022-JM482the Education and Teaching Reform Funds for the Central Universities,No.23GZ230102(all to LL and HH).
文摘Although previous studies have demonstrated that transcranial focused ultrasound stimulation protects the ischemic brain,clear criteria for the stimulation time window and intensity are lacking.Electrical impedance tomography enables real-time monitoring of changes in cerebral blood perfusion within the ischemic brain,but investigating the feasibility of using this method to assess post-stroke rehabilitation in vivo remains critical.In this study,ischemic stroke was induced in rats through middle cerebral artery occlusion surgery.Transcranial focused ultrasound stimulation was used to treat the rat model of ischemia,and electrical impedance tomography was used to measure impedance during both the acute stage of ischemia and the rehabilitation stage following the stimulation.Electrical impedance tomography results indicated that cerebral impedance increased after the onset of ischemia and decreased following transcranial focused ultrasound stimulation.Furthermore,the stimulation promoted motor function recovery,reduced cerebral infarction volume in the rat model of ischemic stroke,and induced the expression of brain-derived neurotrophic factor in the ischemic brain.Our results also revealed a significant correlation between the impedance of the ischemic brain post-intervention and improvements in behavioral scores and infarct volume.This study shows that daily administration of transcranial focused ultrasound stimulation for 20 minutes to the ischemic hemisphere 24 hours after cerebral ischemia enhanced motor recovery in a rat model of ischemia.Additionally,our findings indicate that electrical impedance tomography can serve as a valuable tool for quantitatively evaluating rehabilitation after ischemic stroke in vivo.These findings suggest the feasibility of using impedance data collected via electrical impedance tomography to clinically assess the effects of rehabilitatory interventions for patients with ischemic stroke.
基金supported by the Scientific and Technological Innovation Project of the China Academy of Chinese Medical Sciences(CI2021A04013)the National Natural Science Foundation of China(82204610)+1 种基金the Qihang Talent Program(L2022046)the Fundamental Research Funds for the Central Public Welfare Research Institutes(ZZ15-YQ-041 and L2021029).
文摘Background:Os Draconis is an important material in traditional Chinese medicine(TCM).However,its market is saturated with counterfeit products,and the limitations of current identification methods pose a serious threat to clinical effectiveness and drug safety.This study aims to establish a more accurate and comprehensive authentication system for Os Draconis.Methods:A comprehensive approach was employed to analyze authentic Os Draconis,fossilized Os Draconis,counterfeit products,and lab-prepared modern animal bones.The analytical techniques included ^(14)C dating,electron probe microanalysis(EPMA),polarized light microscopy,X-ray diffraction(XRD),inductively coupled plasma mass spectrometry(ICP-MS),and fourier-transform infrared spectroscopy(FTIR).The study focused on examining the microstructural features and micro-area elemental compositions to identify distinguishing characteristics.Results:Physical identification alone was insufficient to reliably distinguish authentic Os Draconis from its counterfeits.XRD analysis revealed that while hydroxyapatite is the main component in all samples,authentic Os Draconis also contains calcium carbonate and quartz,which were absent in counterfeit and lab-prepared samples.FTIR spectra identified the carbonate ion(CO_(3)^(2-))as a characteristic infrared marker for authentic Os Draconis.ICP-MS analysis showed that Ca and P are the major elements,with a notably high content of Lanthanum(La)among rare earth elements in authentic samples.The EPMA results demonstrated that the Ca/P ratio of authentic Os Draconis is distinct,falling between that of fossilized Os Draconis and counterfeit samples.Conclusion:This study successfully identified several precise markers,including the presence of calcium carbonate,the characteristic CO_(3)^(2-)infrared peak,a high La content,and a specific Ca/P ratio,for the accurate and rapid authentication of Os Draconis.Furthermore,the analysis of its natural porous structure,suitable pore size,and surface area suggests that Os Draconis has significant potential as a natural drug carrier.
基金supported by the National Natural Science Foundation of China,Nos.32070989(to YMZ),31872766(to YMZ),81790640(to XLY),and 82070993(to SJW)the grant from Sanming Project of Medicine in Shenzhen,No.SZSM202011015(to XLY)。
文摘Diabetic retinopathy is a prominent cause of blindness in adults,with early retinal ganglion cell loss contributing to visual dysfunction or blindness.In the brain,defects inγ-aminobutyric acid synaptic transmission are associated with pathophysiological and neurodegenerative disorders,whereas glucagon-like peptide-1 has demonstrated neuroprotective effects.However,it is not yet clear whether diabetes causes alterations in inhibitory input to retinal ganglion cells and whether and how glucagon-like peptide-1 protects against neurodegeneration in the diabetic retina through regulating inhibitory synaptic transmission to retinal ganglion cells.In the present study,we used the patch-clamp technique to recordγ-aminobutyric acid subtype A receptor-mediated miniature inhibitory postsynaptic currents in retinal ganglion cells from streptozotocin-induced diabetes model rats.We found that early diabetes(4 weeks of hyperglycemia)decreased the frequency of GABAergic miniature inhibitory postsynaptic currents in retinal ganglion cells without altering their amplitude,suggesting a reduction in the spontaneous release ofγ-aminobutyric acid to retinal ganglion cells.Topical administration of glucagon-like peptide-1 eyedrops over a period of 2 weeks effectively countered the hyperglycemia-induced downregulation of GABAergic mIPSC frequency,subsequently enhancing the survival of retinal ganglion cells.Concurrently,the protective effects of glucagon-like peptide-1 on retinal ganglion cells in diabetic rats were eliminated by topical administration of exendin-9-39,a specific glucagon-like peptide-1 receptor antagonist,or SR95531,a specific antagonist of theγ-aminobutyric acid subtype A receptor.Furthermore,extracellular perfusion of glucagon-like peptide-1 was found to elevate the frequencies of GABAergic miniature inhibitory postsynaptic currents in both ON-and OFF-type retinal ganglion cells.This elevation was shown to be mediated by activation of the phosphatidylinositol-phospholipase C/inositol 1,4,5-trisphosphate receptor/Ca2+/protein kinase C signaling pathway downstream of glucagon-like peptide-1 receptor activation.Moreover,multielectrode array recordings revealed that glucagon-like peptide-1 functionally augmented the photoresponses of ON-type retinal ganglion cells.Optomotor response tests demonstrated that diabetic rats exhibited reductions in visual acuity and contrast sensitivity that were significantly ameliorated by topical administration of glucagon-like peptide-1.These results suggest that glucagon-like peptide-1 facilitates the release ofγ-aminobutyric acid onto retinal ganglion cells through the activation of glucagon-like peptide-1 receptor,leading to the de-excitation of retinal ganglion cell circuits and the inhibition of excitotoxic processes associated with diabetic retinopathy.Collectively,our findings indicate that theγ-aminobutyric acid system has potential as a therapeutic target for mitigating early-stage diabetic retinopathy.Furthermore,the topical administration of glucagon-like peptide-1 eyedrops represents a non-invasive and effective treatment approach for managing early-stage diabetic retinopathy.