Background:Os Draconis is an important material in traditional Chinese medicine(TCM).However,its market is saturated with counterfeit products,and the limitations of current identification methods pose a serious threa...Background:Os Draconis is an important material in traditional Chinese medicine(TCM).However,its market is saturated with counterfeit products,and the limitations of current identification methods pose a serious threat to clinical effectiveness and drug safety.This study aims to establish a more accurate and comprehensive authentication system for Os Draconis.Methods:A comprehensive approach was employed to analyze authentic Os Draconis,fossilized Os Draconis,counterfeit products,and lab-prepared modern animal bones.The analytical techniques included ^(14)C dating,electron probe microanalysis(EPMA),polarized light microscopy,X-ray diffraction(XRD),inductively coupled plasma mass spectrometry(ICP-MS),and fourier-transform infrared spectroscopy(FTIR).The study focused on examining the microstructural features and micro-area elemental compositions to identify distinguishing characteristics.Results:Physical identification alone was insufficient to reliably distinguish authentic Os Draconis from its counterfeits.XRD analysis revealed that while hydroxyapatite is the main component in all samples,authentic Os Draconis also contains calcium carbonate and quartz,which were absent in counterfeit and lab-prepared samples.FTIR spectra identified the carbonate ion(CO_(3)^(2-))as a characteristic infrared marker for authentic Os Draconis.ICP-MS analysis showed that Ca and P are the major elements,with a notably high content of Lanthanum(La)among rare earth elements in authentic samples.The EPMA results demonstrated that the Ca/P ratio of authentic Os Draconis is distinct,falling between that of fossilized Os Draconis and counterfeit samples.Conclusion:This study successfully identified several precise markers,including the presence of calcium carbonate,the characteristic CO_(3)^(2-)infrared peak,a high La content,and a specific Ca/P ratio,for the accurate and rapid authentication of Os Draconis.Furthermore,the analysis of its natural porous structure,suitable pore size,and surface area suggests that Os Draconis has significant potential as a natural drug carrier.展开更多
Diabetic retinopathy is a prominent cause of blindness in adults,with early retinal ganglion cell loss contributing to visual dysfunction or blindness.In the brain,defects inγ-aminobutyric acid synaptic transmission ...Diabetic retinopathy is a prominent cause of blindness in adults,with early retinal ganglion cell loss contributing to visual dysfunction or blindness.In the brain,defects inγ-aminobutyric acid synaptic transmission are associated with pathophysiological and neurodegenerative disorders,whereas glucagon-like peptide-1 has demonstrated neuroprotective effects.However,it is not yet clear whether diabetes causes alterations in inhibitory input to retinal ganglion cells and whether and how glucagon-like peptide-1 protects against neurodegeneration in the diabetic retina through regulating inhibitory synaptic transmission to retinal ganglion cells.In the present study,we used the patch-clamp technique to recordγ-aminobutyric acid subtype A receptor-mediated miniature inhibitory postsynaptic currents in retinal ganglion cells from streptozotocin-induced diabetes model rats.We found that early diabetes(4 weeks of hyperglycemia)decreased the frequency of GABAergic miniature inhibitory postsynaptic currents in retinal ganglion cells without altering their amplitude,suggesting a reduction in the spontaneous release ofγ-aminobutyric acid to retinal ganglion cells.Topical administration of glucagon-like peptide-1 eyedrops over a period of 2 weeks effectively countered the hyperglycemia-induced downregulation of GABAergic mIPSC frequency,subsequently enhancing the survival of retinal ganglion cells.Concurrently,the protective effects of glucagon-like peptide-1 on retinal ganglion cells in diabetic rats were eliminated by topical administration of exendin-9-39,a specific glucagon-like peptide-1 receptor antagonist,or SR95531,a specific antagonist of theγ-aminobutyric acid subtype A receptor.Furthermore,extracellular perfusion of glucagon-like peptide-1 was found to elevate the frequencies of GABAergic miniature inhibitory postsynaptic currents in both ON-and OFF-type retinal ganglion cells.This elevation was shown to be mediated by activation of the phosphatidylinositol-phospholipase C/inositol 1,4,5-trisphosphate receptor/Ca2+/protein kinase C signaling pathway downstream of glucagon-like peptide-1 receptor activation.Moreover,multielectrode array recordings revealed that glucagon-like peptide-1 functionally augmented the photoresponses of ON-type retinal ganglion cells.Optomotor response tests demonstrated that diabetic rats exhibited reductions in visual acuity and contrast sensitivity that were significantly ameliorated by topical administration of glucagon-like peptide-1.These results suggest that glucagon-like peptide-1 facilitates the release ofγ-aminobutyric acid onto retinal ganglion cells through the activation of glucagon-like peptide-1 receptor,leading to the de-excitation of retinal ganglion cell circuits and the inhibition of excitotoxic processes associated with diabetic retinopathy.Collectively,our findings indicate that theγ-aminobutyric acid system has potential as a therapeutic target for mitigating early-stage diabetic retinopathy.Furthermore,the topical administration of glucagon-like peptide-1 eyedrops represents a non-invasive and effective treatment approach for managing early-stage diabetic retinopathy.展开更多
基金supported by the Scientific and Technological Innovation Project of the China Academy of Chinese Medical Sciences(CI2021A04013)the National Natural Science Foundation of China(82204610)+1 种基金the Qihang Talent Program(L2022046)the Fundamental Research Funds for the Central Public Welfare Research Institutes(ZZ15-YQ-041 and L2021029).
文摘Background:Os Draconis is an important material in traditional Chinese medicine(TCM).However,its market is saturated with counterfeit products,and the limitations of current identification methods pose a serious threat to clinical effectiveness and drug safety.This study aims to establish a more accurate and comprehensive authentication system for Os Draconis.Methods:A comprehensive approach was employed to analyze authentic Os Draconis,fossilized Os Draconis,counterfeit products,and lab-prepared modern animal bones.The analytical techniques included ^(14)C dating,electron probe microanalysis(EPMA),polarized light microscopy,X-ray diffraction(XRD),inductively coupled plasma mass spectrometry(ICP-MS),and fourier-transform infrared spectroscopy(FTIR).The study focused on examining the microstructural features and micro-area elemental compositions to identify distinguishing characteristics.Results:Physical identification alone was insufficient to reliably distinguish authentic Os Draconis from its counterfeits.XRD analysis revealed that while hydroxyapatite is the main component in all samples,authentic Os Draconis also contains calcium carbonate and quartz,which were absent in counterfeit and lab-prepared samples.FTIR spectra identified the carbonate ion(CO_(3)^(2-))as a characteristic infrared marker for authentic Os Draconis.ICP-MS analysis showed that Ca and P are the major elements,with a notably high content of Lanthanum(La)among rare earth elements in authentic samples.The EPMA results demonstrated that the Ca/P ratio of authentic Os Draconis is distinct,falling between that of fossilized Os Draconis and counterfeit samples.Conclusion:This study successfully identified several precise markers,including the presence of calcium carbonate,the characteristic CO_(3)^(2-)infrared peak,a high La content,and a specific Ca/P ratio,for the accurate and rapid authentication of Os Draconis.Furthermore,the analysis of its natural porous structure,suitable pore size,and surface area suggests that Os Draconis has significant potential as a natural drug carrier.
基金supported by the National Natural Science Foundation of China,Nos.32070989(to YMZ),31872766(to YMZ),81790640(to XLY),and 82070993(to SJW)the grant from Sanming Project of Medicine in Shenzhen,No.SZSM202011015(to XLY)。
文摘Diabetic retinopathy is a prominent cause of blindness in adults,with early retinal ganglion cell loss contributing to visual dysfunction or blindness.In the brain,defects inγ-aminobutyric acid synaptic transmission are associated with pathophysiological and neurodegenerative disorders,whereas glucagon-like peptide-1 has demonstrated neuroprotective effects.However,it is not yet clear whether diabetes causes alterations in inhibitory input to retinal ganglion cells and whether and how glucagon-like peptide-1 protects against neurodegeneration in the diabetic retina through regulating inhibitory synaptic transmission to retinal ganglion cells.In the present study,we used the patch-clamp technique to recordγ-aminobutyric acid subtype A receptor-mediated miniature inhibitory postsynaptic currents in retinal ganglion cells from streptozotocin-induced diabetes model rats.We found that early diabetes(4 weeks of hyperglycemia)decreased the frequency of GABAergic miniature inhibitory postsynaptic currents in retinal ganglion cells without altering their amplitude,suggesting a reduction in the spontaneous release ofγ-aminobutyric acid to retinal ganglion cells.Topical administration of glucagon-like peptide-1 eyedrops over a period of 2 weeks effectively countered the hyperglycemia-induced downregulation of GABAergic mIPSC frequency,subsequently enhancing the survival of retinal ganglion cells.Concurrently,the protective effects of glucagon-like peptide-1 on retinal ganglion cells in diabetic rats were eliminated by topical administration of exendin-9-39,a specific glucagon-like peptide-1 receptor antagonist,or SR95531,a specific antagonist of theγ-aminobutyric acid subtype A receptor.Furthermore,extracellular perfusion of glucagon-like peptide-1 was found to elevate the frequencies of GABAergic miniature inhibitory postsynaptic currents in both ON-and OFF-type retinal ganglion cells.This elevation was shown to be mediated by activation of the phosphatidylinositol-phospholipase C/inositol 1,4,5-trisphosphate receptor/Ca2+/protein kinase C signaling pathway downstream of glucagon-like peptide-1 receptor activation.Moreover,multielectrode array recordings revealed that glucagon-like peptide-1 functionally augmented the photoresponses of ON-type retinal ganglion cells.Optomotor response tests demonstrated that diabetic rats exhibited reductions in visual acuity and contrast sensitivity that were significantly ameliorated by topical administration of glucagon-like peptide-1.These results suggest that glucagon-like peptide-1 facilitates the release ofγ-aminobutyric acid onto retinal ganglion cells through the activation of glucagon-like peptide-1 receptor,leading to the de-excitation of retinal ganglion cell circuits and the inhibition of excitotoxic processes associated with diabetic retinopathy.Collectively,our findings indicate that theγ-aminobutyric acid system has potential as a therapeutic target for mitigating early-stage diabetic retinopathy.Furthermore,the topical administration of glucagon-like peptide-1 eyedrops represents a non-invasive and effective treatment approach for managing early-stage diabetic retinopathy.