Switched Reluctance Motors(SRMs),outfitted with rugged construction,good speed range,high torque density,and rare earth-free nature that outweigh induction motors(IM)and permanent magnet synchronous motor(PMSM),afford...Switched Reluctance Motors(SRMs),outfitted with rugged construction,good speed range,high torque density,and rare earth-free nature that outweigh induction motors(IM)and permanent magnet synchronous motor(PMSM),afford a broad range of applications in the domain of electric vehicles(EVs).Standard copper magnetic wire and low-carbon steel laminations are used to construct SRMs,which give them high efficiency in the range of 85-95%.Despite SRM's desirable features over traditional motor-speed drives,high torque ripples and radial distortions constrain their deployment in EVs.Precise rotor position is imperative for effective management of the speed and torque of SRMs.This paper provides an illustrative compendium on review of the torque-speed control and ripple mitigation techniques using design enhancements and control methods for SRM drives for EV applications.The various schemes were evaluated on their performance metricsoperational speed range,control complexity,practical realization,need for pre-stored parameters(look-up tables of current,inductance and torque profiles)and motor controller memory requirements.The findings provide valuable insights into balancing the gains and trade-offs associated with EV applications.Furthermore,they pinpoint opportunities for enhancement by analyzing the cost and technical aspects of different SRM controllers.展开更多
When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is...When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is necessary to consider the diversity of control targets and the complexity of dynamic models,which brings the challenge of high-precision tracking control of the stack output power and cathode intake flow.For system idle speed control,a modelbased nonlinear control framework is constructed in this paper.Firstly,the nonlinear dynamic model of output power and cathode intake flow is derived.Secondly,a control scheme combining nonlinear extended Kalman filter observer and state feedback controller is designed.Finally,the control scheme is verified on the PEMFC experimental platform and compared with the proportion-integration-differentiation(PID)controller.The experimental results show that the control strategy proposed in this paper can realize the idle speed control of the fuel cell system and achieve the purpose of zero power output.Compared with PID controller,it has faster response speed and better system dynamics.展开更多
Predictive cruise control(PCC)is an intelligence-assisted control technology that can significantly improve the overall performance of a vehicle by using road and traffic information in advance.With the continuous dev...Predictive cruise control(PCC)is an intelligence-assisted control technology that can significantly improve the overall performance of a vehicle by using road and traffic information in advance.With the continuous development of cloud control platforms(CCPs)and telematics boxes(T-boxes),cloud-based predictive cruise control(CPCC)systems are considered an effective solution to the problems of map update difficulties and insufficient computing power on the vehicle side.In this study,a vehicle-cloud hierarchical control architecture for PCC is designed based on a CCP and T-box.This architecture utilizes waypoint structures for hierarchical and dynamic cooperative inter-triggering,enabling rolling optimization of the system and commending parsing at the vehicle end.This approach significantly improves the anti-interference capability and resolution efficiency of the system.On the CCP side,a predictive fuel-saving speed-planning(PFSP)algorithm that considers the throttle input,speed variations,and time efficiency based on the waypoint structure is proposed.It features a forward optimization search without requiring weight adjustments,demonstrating robust applicability to various road conditions and vehicles equiped with constant cruise(CC)system.On the vehicle-side T-box,based on the reference control sequence with the global navigation satellite system position,the recommended speed is analyzed and controlled using the acute angle principle.Through analyzing the differences of the PFSP algorithm compared to dynamic programming(DP)and Model predictive control(MPC)algorithms under uphill and downhill conditions,the results show that the PFSP achieves good energy-saving performance compared to CC without exhibiting significant speed fluctuations,demonstrating strong adaptability to the CC system.Finally,by building an experimental platform and running field tests over a total of 2000 km,we verified the effectiveness and stability of the CPCC system and proved the fuel-saving performance of the proposed PFSP algorithm.The results showed that the CPCC system equipped with the PFSP algorithm achieved an average fuel-saving rate of 2.05%-4.39%compared to CC.展开更多
Permanent Magnet Synchronous Motors(PMSMs)are widely employed in high-performance drive applications due to their superior efficiency and dynamic capabilities.However,their control remains challenging owing to nonline...Permanent Magnet Synchronous Motors(PMSMs)are widely employed in high-performance drive applications due to their superior efficiency and dynamic capabilities.However,their control remains challenging owing to nonlinear dynamics,parameter variations,and unmeasurable external disturbances,particularly load torquefluctuations.This study proposes an enhanced Interconnection and Damp-ing Assignment Passivity-Based Control(IDA-PBC)scheme,formulated within the port-controlled Hamiltonian(PCH)framework,to address these limitations.A nonlinear disturbance observer is embedded to estimate and compensate,in real time,for lumped mis-matched disturbances arising from parameter uncertainties and external loads.Additionally,aflatness-based control strategy is employed to generate the desired current references within the nonlinear drive system,ensuring accurate tracking of time-varying speed commands.This integrated approach preserves the system’s energy-based structure,enabling systematic stability analysis while enhancing robustness.The proposed control architecture also maintains low complexity with a limited number of tunable parameters,facilitating practical implementation.Simulation and experimental results under various operating conditions demonstrate the effectiveness and robustness of the proposed method.Comparative analysis with conventional proportional-integral(PI)control and standard IDA-PBC strategies confirms its capability to handle disturbances and maintain dynamic performance.展开更多
The high-speed reentry vehicle operates across a broad range of speeds and spatial domains,where optimal aerodynamic shapes for different speeds are contradictory.This makes it challenging for a single-Mach optimizati...The high-speed reentry vehicle operates across a broad range of speeds and spatial domains,where optimal aerodynamic shapes for different speeds are contradictory.This makes it challenging for a single-Mach optimization design to meet aerodynamic performance requirements throughout the vehicle’s flight envelope.Additionally,the strong coupling between aerodynamics and control adds complexity,as fluctuations in aerodynamic parameters due to speed variations complicate control system design.To address these challenges,this study proposes an aerodynamic/control coupling optimization design approach.This method,based on aerodynamic optimization principles,incorporates active control technology,treating aerodynamic layout and control system design as primary components during the conceptual design phase.By integrating the design and evaluation of aerodynamics and control,the approach aims to reduce design iterations and enhance overall flight performance.The comprehensive design of the rotary reentry vehicle,using this optimization strategy,effectively balances performance at supersonic and hypersonic speeds.The results show that the integrated design model meets aerodynamic and control performance requirements over a broader range of Mach numbers,preventing performance degradation due to deviations from the design Mach number,and providing a practical solution for high-speed reentry vehicle design.展开更多
A mobile marine seismometer(MMS)is a vertical underwater vehicle that detects ocean seismic waves.One of the critical operational requirements for an MMS is that it remains suspended at a desired depth.This article ai...A mobile marine seismometer(MMS)is a vertical underwater vehicle that detects ocean seismic waves.One of the critical operational requirements for an MMS is that it remains suspended at a desired depth.This article aimed to propose a fixed-depth suspension control for the MMS with a limited onboard energy supply.The research team established a kinematic model to analyze fluctuations in the vertical motion of the MMS and the delayed response of the system.We ascertained a direct one-to-one correlation between the displacement volume of the mobile ocean seismic instrument and the depth at which it reaches a state of neutral buoyancy(commonly referred to as the hover depth).A fixed-depth control algorithm was introduced,allowing a gradual approach to the necessary displacement volume to reach the desired suspension depth.The study optimized the boundary conditions to reduce unnecessary adjustments and mitigate the time delay caused by the instrument’s inertia,thereby significantly minimizing energy consumption.This method does not require calculating the hydrodynamic parameters or transfer functions of the MMS,thereby considerably reducing the implementation complexity.In the three-month sea trial in the South China Sea,the seismic instrument was set to hover at 800 m,with a permissible fluctuation of±100 m,operating on a seven-day cycle.The experimental results show that the seismic instrument has an average hover error of 34.6 m,with a vertical drift depth of 29.6 m per cycle,and the buoyancy adjustment system made six adjustments,indicating that our proposed control method performs satisfactorily.In addition,this method provides new insights for the fixed-depth control of other ocean observation devices that rely on buoyancy adjustment.展开更多
To achieve the track following and collision avoidance of underactuated unmanned surface vehicle(USV),autonomous navigation model based on model predictive control is established by including the track offset,speed va...To achieve the track following and collision avoidance of underactuated unmanned surface vehicle(USV),autonomous navigation model based on model predictive control is established by including the track offset,speed variation and rule compliance as the evaluation functions and including the ship domain of dynamic/static navigation obstacles and the mechanical characteristics limitation as constraints.The effectiveness of the model for autonomous navigation of USV in the situation of multi-ship encounters and in the complex waters with both dynamic and static obstructions is verified by several groups of simulation work.The simulation results show that the proposed model can realize the autonomous navigation of the underactuated USV under the complex waters.展开更多
Due to the coexistence of compressibility,viscosity,and threedimensional effects,laminar flow is difficult to maintain for high-speed boundary layer on complex geometries.The unstable disturbance waves in the boundary...Due to the coexistence of compressibility,viscosity,and threedimensional effects,laminar flow is difficult to maintain for high-speed boundary layer on complex geometries.The unstable disturbance waves in the boundary layer are excited and rapidly increase during the receptivity process,so sufficiently large Reynolds stress causes the basic flow velocity profile to change,and the formation of turbulence is inevitable.展开更多
This study highlights the importance of identifying and addressing risk factors associated with wound complications following transtibial amputation in diabetic patients.These amputations,often necessitated by severe ...This study highlights the importance of identifying and addressing risk factors associated with wound complications following transtibial amputation in diabetic patients.These amputations,often necessitated by severe diabetic foot ulcers,carry significant risks of postoperative complications such as infection and delayed wound healing.Elevated hemoglobin A1c levels,indicative of poor glycemic control,and a history of kidney transplantation,due to required immunosuppressive therapy,are key factors influencing these outcomes.This paper emphasizes the need for enhanced glycemic management and personalized postoperative care,particularly for immunocompromised individuals,to minimize complications and improve patient prognosis.Future research should focus on prospective studies to validate targeted interventions and optimize care strategies,ultimately aiming to reduce the healthcare burden associated with diabetic foot complications.展开更多
The focal adhesion(FA)is the structural basis of the cell-extracellular matrix crosstalk and plays important roles in control of organ formation and function.Here we show that expression of FA protein vinculin is dram...The focal adhesion(FA)is the structural basis of the cell-extracellular matrix crosstalk and plays important roles in control of organ formation and function.Here we show that expression of FA protein vinculin is dramatically reduced in osteocytes in patients with aging-related osteoporosis.Vinculin loss severely impaired osteocyte adhesion and dendrite formation.Deleting vinculin using the mouse 10-kb Dmp1-Cre transgenic mice causes dramatic bone loss in the weight-bearing long bones and spine,but not in the skull,in both young and aged mice by impairing osteoblast formation and function without markedly affecting bone resorption.Vinculin loss impairs the anabolic response of skeleton to mechanical loading in mice.Vinculin knockdown increases,while vinculin overexpression decreases,sclerostin expression in osteocytes without impacting expression of Mef2c,a major transcriptional regulator of the Sost gene,which encodes sclerostin.Vinculin interacts with Mef2c and retains the latter in the cytoplasm.Thus,vinculin loss enhances Mef2c nuclear translocation and binding to the Sost enhancer ECR5 to promote sclerostin expression in osteocytes and reduces bone formation.Consistent with this notion,deleting Sost expression in osteocytes reverses the osteopenic phenotypes caused by vinculin loss in mice.Finally,we find that estrogen is a novel regulator of vinculin expression in osteocytes and that vinculin-deficient mice are resistant to ovariectomy-induced bone loss.Thus,we demonstrate a novel mechanism through which vinculin inhibits the Mef2c-driven sclerostin expression in osteocytes to promote bone formation.展开更多
This article proposes a novel approach combining exponential-reaching-law-based equivalent control law with radial basis function (RBF) network-based switching law to strengthen the sliding mode control (SMC) tracking...This article proposes a novel approach combining exponential-reaching-law-based equivalent control law with radial basis function (RBF) network-based switching law to strengthen the sliding mode control (SMC) tracking capacity for systems with uncertainties and disturbances. First, SMC discrete equivalent control law is designed on the basis of the nominal model of the system and the adaptive exponential reaching law, and subsequently, stability of the algorithm is analyzed. Second, RBF network is used to f...展开更多
The control platform of the induction motor (IM) with low costs is developed by using DSP MC56F8013 with a good performance/price rtaio. The control algorithm for the speed sensorless IM is studied based on the stat...The control platform of the induction motor (IM) with low costs is developed by using DSP MC56F8013 with a good performance/price rtaio. The control algorithm for the speed sensorless IM is studied based on the stator flux orientation (SFO). The algorithm structure is simple to be implemented and cannot be influenced by motor parameters, The improved stator flux estimation is used to compensate errors caused by the low pass filter (LPF). A new speed regulator is designed to ensure the system working with the maximal torque in the transient state. The system simulation and the prototype experiment are made. Results show that the con- trol system has good dynamic and static performance.展开更多
A new method for the control of the speed of an ultrasonic motor and its implementation are proposed. The method is merely used by detecting the time when motor′s monitor signal reaches a non zero reference valu...A new method for the control of the speed of an ultrasonic motor and its implementation are proposed. The method is merely used by detecting the time when motor′s monitor signal reaches a non zero reference value than a zero one, the direction, in which the driving frequency of the motor should be shifted, can be promptly calculated. With the aid of a CPU and the phase locked frequency doubling technique, the motor can be steadily driven in a wide range of frequency and the optimum frequency can be captured rapidly and precisely. Experiment shows that the above method is available.展开更多
A fuzzy neural network controller with the teaching controller guidance and parameter regulations for vector-controlled induction motor is proposed. The design procedures of the fuzzy neural controller and the teachin...A fuzzy neural network controller with the teaching controller guidance and parameter regulations for vector-controlled induction motor is proposed. The design procedures of the fuzzy neural controller and the teaching controller are described. The parameters of the membership function are regulated by an on-line learning algorithm. The speed responses of the system under the condition, where the target functions are chosen as I qs and ω, are analyzed. The system responses with the variant of parameter moment of inertial J, viscous coefficients B and torque constant K tare also analyzed. Simulation results show that the control scheme and the controller have the advantages of rapid speed response and good robustness.展开更多
A speed sensorless vector control system of induction motor with estimated rotor speed and rotor flux using a new reduced order extended Kalman filter is proposed. With this method, two rotor flux components are sele...A speed sensorless vector control system of induction motor with estimated rotor speed and rotor flux using a new reduced order extended Kalman filter is proposed. With this method, two rotor flux components are selected as the state variables, and the rotor speed as an estimated parameter is regarded as an augmented state variable. The algorithm with reduced order decreases the computational complexity and makes the proposed estimator feasible to be implemented in real time. The simulation results show high accuracy of the estimation algorithm and good performance of speed control, and verify the usefulness of the proposed algorithm.展开更多
基金supported in part by the Universitat Politècnica de València under grant PAID-10-21supported through AMRITA Seed Grant(Proposal ID:ASG2022188)。
文摘Switched Reluctance Motors(SRMs),outfitted with rugged construction,good speed range,high torque density,and rare earth-free nature that outweigh induction motors(IM)and permanent magnet synchronous motor(PMSM),afford a broad range of applications in the domain of electric vehicles(EVs).Standard copper magnetic wire and low-carbon steel laminations are used to construct SRMs,which give them high efficiency in the range of 85-95%.Despite SRM's desirable features over traditional motor-speed drives,high torque ripples and radial distortions constrain their deployment in EVs.Precise rotor position is imperative for effective management of the speed and torque of SRMs.This paper provides an illustrative compendium on review of the torque-speed control and ripple mitigation techniques using design enhancements and control methods for SRM drives for EV applications.The various schemes were evaluated on their performance metricsoperational speed range,control complexity,practical realization,need for pre-stored parameters(look-up tables of current,inductance and torque profiles)and motor controller memory requirements.The findings provide valuable insights into balancing the gains and trade-offs associated with EV applications.Furthermore,they pinpoint opportunities for enhancement by analyzing the cost and technical aspects of different SRM controllers.
基金Supported by the Major Science and Technology Projects in Jilin Province and Changchun City(20220301010GX).
文摘When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is necessary to consider the diversity of control targets and the complexity of dynamic models,which brings the challenge of high-precision tracking control of the stack output power and cathode intake flow.For system idle speed control,a modelbased nonlinear control framework is constructed in this paper.Firstly,the nonlinear dynamic model of output power and cathode intake flow is derived.Secondly,a control scheme combining nonlinear extended Kalman filter observer and state feedback controller is designed.Finally,the control scheme is verified on the PEMFC experimental platform and compared with the proportion-integration-differentiation(PID)controller.The experimental results show that the control strategy proposed in this paper can realize the idle speed control of the fuel cell system and achieve the purpose of zero power output.Compared with PID controller,it has faster response speed and better system dynamics.
基金Supported by National Key Research and Development Program of China(Grant No.2021YFB2501000).
文摘Predictive cruise control(PCC)is an intelligence-assisted control technology that can significantly improve the overall performance of a vehicle by using road and traffic information in advance.With the continuous development of cloud control platforms(CCPs)and telematics boxes(T-boxes),cloud-based predictive cruise control(CPCC)systems are considered an effective solution to the problems of map update difficulties and insufficient computing power on the vehicle side.In this study,a vehicle-cloud hierarchical control architecture for PCC is designed based on a CCP and T-box.This architecture utilizes waypoint structures for hierarchical and dynamic cooperative inter-triggering,enabling rolling optimization of the system and commending parsing at the vehicle end.This approach significantly improves the anti-interference capability and resolution efficiency of the system.On the CCP side,a predictive fuel-saving speed-planning(PFSP)algorithm that considers the throttle input,speed variations,and time efficiency based on the waypoint structure is proposed.It features a forward optimization search without requiring weight adjustments,demonstrating robust applicability to various road conditions and vehicles equiped with constant cruise(CC)system.On the vehicle-side T-box,based on the reference control sequence with the global navigation satellite system position,the recommended speed is analyzed and controlled using the acute angle principle.Through analyzing the differences of the PFSP algorithm compared to dynamic programming(DP)and Model predictive control(MPC)algorithms under uphill and downhill conditions,the results show that the PFSP achieves good energy-saving performance compared to CC without exhibiting significant speed fluctuations,demonstrating strong adaptability to the CC system.Finally,by building an experimental platform and running field tests over a total of 2000 km,we verified the effectiveness and stability of the CPCC system and proved the fuel-saving performance of the proposed PFSP algorithm.The results showed that the CPCC system equipped with the PFSP algorithm achieved an average fuel-saving rate of 2.05%-4.39%compared to CC.
基金supported in part by an International Research Partnership“Electrical Engineering-Thai French Research Center(EE-TFRC)”under the project framework of the Lorraine Universite´d’Excellence(LUE)in cooperation between Universite´de Lorraine(France)and King Mongkut’s University of Technology North Bangkok(year 2021-2024/2025-28)by the National Research Council of Thailand(NRCT)under Research Team Promotion Grant(Senior Research Scholar Program)under Grant No.N42A 680561by the NSRF via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation under Research project Grant No.B41G680025.
文摘Permanent Magnet Synchronous Motors(PMSMs)are widely employed in high-performance drive applications due to their superior efficiency and dynamic capabilities.However,their control remains challenging owing to nonlinear dynamics,parameter variations,and unmeasurable external disturbances,particularly load torquefluctuations.This study proposes an enhanced Interconnection and Damp-ing Assignment Passivity-Based Control(IDA-PBC)scheme,formulated within the port-controlled Hamiltonian(PCH)framework,to address these limitations.A nonlinear disturbance observer is embedded to estimate and compensate,in real time,for lumped mis-matched disturbances arising from parameter uncertainties and external loads.Additionally,aflatness-based control strategy is employed to generate the desired current references within the nonlinear drive system,ensuring accurate tracking of time-varying speed commands.This integrated approach preserves the system’s energy-based structure,enabling systematic stability analysis while enhancing robustness.The proposed control architecture also maintains low complexity with a limited number of tunable parameters,facilitating practical implementation.Simulation and experimental results under various operating conditions demonstrate the effectiveness and robustness of the proposed method.Comparative analysis with conventional proportional-integral(PI)control and standard IDA-PBC strategies confirms its capability to handle disturbances and maintain dynamic performance.
基金supported by the National Natural Science Foundation of China(Grant Nos.52192633,92371201,11872293,and 92152301)the Natural Science Foundation of Shaanxi Province(Grant No.2022JC-03).
文摘The high-speed reentry vehicle operates across a broad range of speeds and spatial domains,where optimal aerodynamic shapes for different speeds are contradictory.This makes it challenging for a single-Mach optimization design to meet aerodynamic performance requirements throughout the vehicle’s flight envelope.Additionally,the strong coupling between aerodynamics and control adds complexity,as fluctuations in aerodynamic parameters due to speed variations complicate control system design.To address these challenges,this study proposes an aerodynamic/control coupling optimization design approach.This method,based on aerodynamic optimization principles,incorporates active control technology,treating aerodynamic layout and control system design as primary components during the conceptual design phase.By integrating the design and evaluation of aerodynamics and control,the approach aims to reduce design iterations and enhance overall flight performance.The comprehensive design of the rotary reentry vehicle,using this optimization strategy,effectively balances performance at supersonic and hypersonic speeds.The results show that the integrated design model meets aerodynamic and control performance requirements over a broader range of Mach numbers,preventing performance degradation due to deviations from the design Mach number,and providing a practical solution for high-speed reentry vehicle design.
基金The National Key Research and Development Program of China under contract Nos.2021YFC3101401 and 2022YFC3003802the Deep Blue Fund under contract No.SL2103+2 种基金the Zhejiang Provincial Key Research and Development Program under contract No.2021C03186the Zhejiang Provincial Natural Science Foundation of China under contract No.LDQ24D060001the Open Fund Project of Key Laboratory of Ocean Observation Technology,MNR under contract No.2024klootA11.
文摘A mobile marine seismometer(MMS)is a vertical underwater vehicle that detects ocean seismic waves.One of the critical operational requirements for an MMS is that it remains suspended at a desired depth.This article aimed to propose a fixed-depth suspension control for the MMS with a limited onboard energy supply.The research team established a kinematic model to analyze fluctuations in the vertical motion of the MMS and the delayed response of the system.We ascertained a direct one-to-one correlation between the displacement volume of the mobile ocean seismic instrument and the depth at which it reaches a state of neutral buoyancy(commonly referred to as the hover depth).A fixed-depth control algorithm was introduced,allowing a gradual approach to the necessary displacement volume to reach the desired suspension depth.The study optimized the boundary conditions to reduce unnecessary adjustments and mitigate the time delay caused by the instrument’s inertia,thereby significantly minimizing energy consumption.This method does not require calculating the hydrodynamic parameters or transfer functions of the MMS,thereby considerably reducing the implementation complexity.In the three-month sea trial in the South China Sea,the seismic instrument was set to hover at 800 m,with a permissible fluctuation of±100 m,operating on a seven-day cycle.The experimental results show that the seismic instrument has an average hover error of 34.6 m,with a vertical drift depth of 29.6 m per cycle,and the buoyancy adjustment system made six adjustments,indicating that our proposed control method performs satisfactorily.In addition,this method provides new insights for the fixed-depth control of other ocean observation devices that rely on buoyancy adjustment.
基金the National Natural Science Foundation of China(No.51879119)the Key Projects of National Key Research and Development Program(No.2021YFB390150)+1 种基金the Natural Science Project of Fujian Province(Nos.2022J01323,2021J01822 and 2020J01660)the Fuzhou-Xiamen-Quanzhou Independent Innovation Region Cooperated Special Foundation(No.3502ZCQXT2021007)。
文摘To achieve the track following and collision avoidance of underactuated unmanned surface vehicle(USV),autonomous navigation model based on model predictive control is established by including the track offset,speed variation and rule compliance as the evaluation functions and including the ship domain of dynamic/static navigation obstacles and the mechanical characteristics limitation as constraints.The effectiveness of the model for autonomous navigation of USV in the situation of multi-ship encounters and in the complex waters with both dynamic and static obstructions is verified by several groups of simulation work.The simulation results show that the proposed model can realize the autonomous navigation of the underactuated USV under the complex waters.
文摘Due to the coexistence of compressibility,viscosity,and threedimensional effects,laminar flow is difficult to maintain for high-speed boundary layer on complex geometries.The unstable disturbance waves in the boundary layer are excited and rapidly increase during the receptivity process,so sufficiently large Reynolds stress causes the basic flow velocity profile to change,and the formation of turbulence is inevitable.
基金Supported by Henan Province Key Research and Development Program,No.231111311000Henan Provincial Science and Technology Research Project,No.232102310411+2 种基金Henan Province Medical Science and Technology Key Project,No.LHGJ20220566 and No.LHGJ20240365Henan Province Medical Education Research Project,No.WJLX2023079Zhengzhou Medical and Health Technology Innovation Guidance Program,No.2024YLZDJH022.
文摘This study highlights the importance of identifying and addressing risk factors associated with wound complications following transtibial amputation in diabetic patients.These amputations,often necessitated by severe diabetic foot ulcers,carry significant risks of postoperative complications such as infection and delayed wound healing.Elevated hemoglobin A1c levels,indicative of poor glycemic control,and a history of kidney transplantation,due to required immunosuppressive therapy,are key factors influencing these outcomes.This paper emphasizes the need for enhanced glycemic management and personalized postoperative care,particularly for immunocompromised individuals,to minimize complications and improve patient prognosis.Future research should focus on prospective studies to validate targeted interventions and optimize care strategies,ultimately aiming to reduce the healthcare burden associated with diabetic foot complications.
基金supported,in part,the Shenzhen Medical Research Funds(B2402033)the Shenzhen Fundamental Research Program(JCYJ20220818100617036)+3 种基金the National Natural Science Foundation of China Grants(82250710175,82261160395,82430078,82230081)the Guangdong Provincial Science and Technology Innovation Council Grant(2017B030301018)the National Key Research and Development Program of China Grant(2019YFA0906004)the China Postdoctoral Science Foundation(2021M691435).
文摘The focal adhesion(FA)is the structural basis of the cell-extracellular matrix crosstalk and plays important roles in control of organ formation and function.Here we show that expression of FA protein vinculin is dramatically reduced in osteocytes in patients with aging-related osteoporosis.Vinculin loss severely impaired osteocyte adhesion and dendrite formation.Deleting vinculin using the mouse 10-kb Dmp1-Cre transgenic mice causes dramatic bone loss in the weight-bearing long bones and spine,but not in the skull,in both young and aged mice by impairing osteoblast formation and function without markedly affecting bone resorption.Vinculin loss impairs the anabolic response of skeleton to mechanical loading in mice.Vinculin knockdown increases,while vinculin overexpression decreases,sclerostin expression in osteocytes without impacting expression of Mef2c,a major transcriptional regulator of the Sost gene,which encodes sclerostin.Vinculin interacts with Mef2c and retains the latter in the cytoplasm.Thus,vinculin loss enhances Mef2c nuclear translocation and binding to the Sost enhancer ECR5 to promote sclerostin expression in osteocytes and reduces bone formation.Consistent with this notion,deleting Sost expression in osteocytes reverses the osteopenic phenotypes caused by vinculin loss in mice.Finally,we find that estrogen is a novel regulator of vinculin expression in osteocytes and that vinculin-deficient mice are resistant to ovariectomy-induced bone loss.Thus,we demonstrate a novel mechanism through which vinculin inhibits the Mef2c-driven sclerostin expression in osteocytes to promote bone formation.
文摘This article proposes a novel approach combining exponential-reaching-law-based equivalent control law with radial basis function (RBF) network-based switching law to strengthen the sliding mode control (SMC) tracking capacity for systems with uncertainties and disturbances. First, SMC discrete equivalent control law is designed on the basis of the nominal model of the system and the adaptive exponential reaching law, and subsequently, stability of the algorithm is analyzed. Second, RBF network is used to f...
文摘The control platform of the induction motor (IM) with low costs is developed by using DSP MC56F8013 with a good performance/price rtaio. The control algorithm for the speed sensorless IM is studied based on the stator flux orientation (SFO). The algorithm structure is simple to be implemented and cannot be influenced by motor parameters, The improved stator flux estimation is used to compensate errors caused by the low pass filter (LPF). A new speed regulator is designed to ensure the system working with the maximal torque in the transient state. The system simulation and the prototype experiment are made. Results show that the con- trol system has good dynamic and static performance.
文摘A new method for the control of the speed of an ultrasonic motor and its implementation are proposed. The method is merely used by detecting the time when motor′s monitor signal reaches a non zero reference value than a zero one, the direction, in which the driving frequency of the motor should be shifted, can be promptly calculated. With the aid of a CPU and the phase locked frequency doubling technique, the motor can be steadily driven in a wide range of frequency and the optimum frequency can be captured rapidly and precisely. Experiment shows that the above method is available.
文摘A fuzzy neural network controller with the teaching controller guidance and parameter regulations for vector-controlled induction motor is proposed. The design procedures of the fuzzy neural controller and the teaching controller are described. The parameters of the membership function are regulated by an on-line learning algorithm. The speed responses of the system under the condition, where the target functions are chosen as I qs and ω, are analyzed. The system responses with the variant of parameter moment of inertial J, viscous coefficients B and torque constant K tare also analyzed. Simulation results show that the control scheme and the controller have the advantages of rapid speed response and good robustness.
文摘A speed sensorless vector control system of induction motor with estimated rotor speed and rotor flux using a new reduced order extended Kalman filter is proposed. With this method, two rotor flux components are selected as the state variables, and the rotor speed as an estimated parameter is regarded as an augmented state variable. The algorithm with reduced order decreases the computational complexity and makes the proposed estimator feasible to be implemented in real time. The simulation results show high accuracy of the estimation algorithm and good performance of speed control, and verify the usefulness of the proposed algorithm.