This paper presents a new CMOS LC-VCO with a 2.95–3.65 GHz tuning range.The large tuning range is achieved by tuning curve compensation using a novel varactor configuration,which is mainly composed of four accumulati...This paper presents a new CMOS LC-VCO with a 2.95–3.65 GHz tuning range.The large tuning range is achieved by tuning curve compensation using a novel varactor configuration,which is mainly composed of four accumulation-mode MOS varactors(A-MOS)and two bias voltages.The proposed varactor has the advantages of optimizing quality factor and tuning range simultaneously,linearizing the effective capacitance and thus greatly reducing the amplitude-to-phase modulation(AM-PM)conversion.The circuit is validated by simulations and fabricated in a standard 0.18μm 1P6M CMOS process.Measured phase noise is lower than–91 dBc at 100 kHz offset from a 3.15 GHz carrier while measured tuning range is 21.5%as the control voltage varies from 0 to 1.8 V.The VCO including buffers consumes 2.8 mA current from a 1.8 V supply.展开更多
An LC-VCO with an enhanced quality factor(Q) varactor for use in a high-sensitivity GNSS receiver is presented.An enhanced A-MOS varactor is composed of two accumulation-mode MOS(A-MOS) varactors and two bias volt...An LC-VCO with an enhanced quality factor(Q) varactor for use in a high-sensitivity GNSS receiver is presented.An enhanced A-MOS varactor is composed of two accumulation-mode MOS(A-MOS) varactors and two bias voltages,which show the improved Q and linearization capacitance-voltage(C-V) curve.The VCO gain(K_(vco)) is compensated by a digital switched varactors array(DSVA) over entire sub-bands.Based on the characteristics of an A-MOS,the varactor in a DSVA is a high Q fixed capacitor as it is switched off,and a moderate Q tuning varactor when it is switched on,which keeps the maximal Q for the LC-tank.The proposed circuit is fabricated in a 0.18μm 1P6M CMOS process.The measured phase noise is better than -122 dBc/Hz at a 1 MHz offset while the measured tuning range is 58.2%and the variation of K_(VCO) is close to±21%over the whole of the sub-bands and the effective range of the control voltage.The proposed VCO dissipates less than 5.4 mW over the whole operating range from a 1.8 V supply.展开更多
基金supported by the National High Technology Research and Development Program of China(No.2007AA12Z344)
文摘This paper presents a new CMOS LC-VCO with a 2.95–3.65 GHz tuning range.The large tuning range is achieved by tuning curve compensation using a novel varactor configuration,which is mainly composed of four accumulation-mode MOS varactors(A-MOS)and two bias voltages.The proposed varactor has the advantages of optimizing quality factor and tuning range simultaneously,linearizing the effective capacitance and thus greatly reducing the amplitude-to-phase modulation(AM-PM)conversion.The circuit is validated by simulations and fabricated in a standard 0.18μm 1P6M CMOS process.Measured phase noise is lower than–91 dBc at 100 kHz offset from a 3.15 GHz carrier while measured tuning range is 21.5%as the control voltage varies from 0 to 1.8 V.The VCO including buffers consumes 2.8 mA current from a 1.8 V supply.
基金Project supported by the National Significant Science and Technology Projects(No.2009ZX01031-002-008)the National High Technology Research and Development Program of China(No.2009AA011601)
文摘An LC-VCO with an enhanced quality factor(Q) varactor for use in a high-sensitivity GNSS receiver is presented.An enhanced A-MOS varactor is composed of two accumulation-mode MOS(A-MOS) varactors and two bias voltages,which show the improved Q and linearization capacitance-voltage(C-V) curve.The VCO gain(K_(vco)) is compensated by a digital switched varactors array(DSVA) over entire sub-bands.Based on the characteristics of an A-MOS,the varactor in a DSVA is a high Q fixed capacitor as it is switched off,and a moderate Q tuning varactor when it is switched on,which keeps the maximal Q for the LC-tank.The proposed circuit is fabricated in a 0.18μm 1P6M CMOS process.The measured phase noise is better than -122 dBc/Hz at a 1 MHz offset while the measured tuning range is 58.2%and the variation of K_(VCO) is close to±21%over the whole of the sub-bands and the effective range of the control voltage.The proposed VCO dissipates less than 5.4 mW over the whole operating range from a 1.8 V supply.