The agro-pastoral ecotone epitomizes the ecologically fragile semi-arid zone,where the soil microbiomes play a pivotal role in regulating its multifunctionality.However,whether and how changes in soil structure and or...The agro-pastoral ecotone epitomizes the ecologically fragile semi-arid zone,where the soil microbiomes play a pivotal role in regulating its multifunctionality.However,whether and how changes in soil structure and organic matter composition under different land uses affect microbial community structure remain unclear.Here,land-use types in the agro-pastoral ecotone,including shrubland(BF),artificial grassland(ArG),abandoned grassland(AbG),and maize farmland(MA),were chosen to explore the response relationships between soil microbial communities and the aggregates and dissolved organic matter(DOM)composition.The results showed that compared to MA,the macroaggregates in BF,AbG,and ArG were increased by 123.0,92.79,and 63.71%,respectively,while MA soil had the greatest abundance of<100μm particles.The higher aromatic carbon with high aromaticity and molecular weight in BF soil DOM contributed to its highest mineral-associated organic carbon level(12.61 g kg^(-1)),while MA soil organic carbon had highly efficient decomposition due to its high content of aliphatic and carboxy carbon,so it is prone to loss from the active carbon pools.The transition in land use from shrubland to grassland and farmland has facilitated the conversion of stable aromatic carbon to unstable carboxy carbon.The taxonomic analysis revealed that soil bacterial and fungal communities in the four land uses were dominated by Proteobacteria,Actinobacteriota,Chloroflexi,and Ascomycota.More taxonomic groups from phylum to family were enriched in BF soil.The DOM components and organic carbon are crucial variables shaping the composition of soil bacterial communities,jointly explaining 61.66% of the variance,while aggregates are important variables driving the composition of fungal communities,with an explanation rate of 20.49%.Our results suggest that DOM components and aggregates impact the soil microbial structure;and the transition in land use from agricultural land to grassland and shrubland in the agro-pastoral ecotone enhances aggregate stability,carbon sequestration potential,and microbial diversity.展开更多
Lithium (Li) metal batteries (LMBs) featuring ultrahigh energy densities are expected as ones of the mostprominent devices for future energy storage applications. Nevertheless, the practical application of LMBs is sti...Lithium (Li) metal batteries (LMBs) featuring ultrahigh energy densities are expected as ones of the mostprominent devices for future energy storage applications. Nevertheless, the practical application of LMBs is stillplagued by the poor interfacial stability of Li metal anode. Inorganic-rich interlayer derived from anion decom-positionin advanced liquid electrolytes is demonstrated as an efficient approach to stabilize the Li metal anode,however, is electrolyte-dependent with limited application conditions due to inappropriate electrolyte properties.Herein, an efficient structuration strategy is proposed to fabricate an electrolyte-independent and sustainedinorganic-rich layer, by embedding a type of functional anion aggregates consisting of selected anions ionicallybonded to polymerized cation clusters. The anion aggregates can progressively release anions to react with Liþand form key components boosting the structural stability and Liþ transfer ability of the artificial layer uponcycling. This self-reinforcing working mechanism endows the artificial layer with a sustained inorganic-richnature and promising Li protective ability during long-term cycling, while the electrolyte-independent propertyenables its applications in LMBs using conventional low concentration electrolytes and all-solid-state LMBs withsignificantly enhanced performances. This strategy establishes an alternative designing route of Li protectivelayers for reliable LMBs.展开更多
Sulfate attack-induced expansion of cement-treated aggregates in seasonally frozen regions is a well-known issue which causes continuous expansion in railway subgrades,and particularly in high-speed railways.According...Sulfate attack-induced expansion of cement-treated aggregates in seasonally frozen regions is a well-known issue which causes continuous expansion in railway subgrades,and particularly in high-speed railways.Accordingly,we investigated the influence of material proportions,the number of freeze-thaw(FT)cycles,and temperature gradients on the expansion mechanism of sulfate attack on cement-treated aggregates subjected to FT cycles.The conditions,laws,and dominant factors causing the expansion of aggregates were analyzed through swelling tests.The results indicate that under FT cycles,3%content cement-treated graded macadam only experiences slight deformation.The maximum strain of graded macadam attacked by 1%sodium sulfate content in each FT cycle is significantly larger than that of 3%content cement-treated graded macadam attacked by 1%sodium sulfate content.Using scanning electron microscopy,needle-like crystals were observed during sulfate attack of cement-treated graded macadam.Through quantitative analysis,we determined the recoverable and unrecoverable deformations of graded macadam under FT cycles.For graded macadam under sulfate attack,the expansion is mainly induced by periodic frost heave and salt expansion,as well as salt migration.For cement-treated graded macadam under sulfate attack,the expansion is mainly induced by chemical attack and salt migration.This study can serve as a reference for future research on the mechanics of sulfate attack on cement-treated aggregates that experience FT cycles,and provide theoretical support for methods that remediate the expansion induced by sulfate attack.展开更多
Global climate change exerts profound effects on snow cover,with consequential impacts on microbial activities and the stability of soil organic carbon(SOC)within aggregates.Northern peatlands are significant carbon r...Global climate change exerts profound effects on snow cover,with consequential impacts on microbial activities and the stability of soil organic carbon(SOC)within aggregates.Northern peatlands are significant carbon reservoirs,playing a critical role in mitigating climate change.However,the effects of snow variations on microbial-mediated SOC stability within aggregates in peatlands remain inadequately understood.Here,an in-situ field experiment manipulating snow conditions(i.e.,snow removal and snow cover)was conducted to investigate how snow variations affect soil microbial community and the associated SOC stability within soil aggregates(>2,0.25-2,and<0.25 mm)in a peatland of Northeast China.The results showed that snow removal significantly increased the SOC content and stability within aggregates.Compared to the soils with snow cover,snow removal resulted in decreased soil average temperatures in the topsoil(0-30 cm depth)and subsoil(30-60 cm depth)(by 1.48 and 1.34°C,respectively)and increased freeze-thaw cycles(by 11 cycles),consequently decreasing the stability of aggregates in the topsoil and subsoil(by 23.68%and 6.85%,respectively).Furthermore,more recalcitrant carbon and enhanced SOC stability were present in microaggregates(<0.25 mm)at two soil depths.Moreover,reductions in bacterial diversity and network stability were observed in response to snow removal.Structural equation modeling analysis demonstrated that snow removal indirectly promoted(P<0.01)SOC stability by regulating carbon to nitrogen(C:N)ratio within aggregates.Overall,our study suggested that microaggregate protection and an appropriate C:N ratio enhanced carbon sequestration in response to climate change.展开更多
The degradation performance of pervious concrete containing TiO_(2)/LDHs-loaded recycled aggregates for NO gas was analyzed using a gas phase catalytic degradation test device,simulating different environmental condit...The degradation performance of pervious concrete containing TiO_(2)/LDHs-loaded recycled aggregates for NO gas was analyzed using a gas phase catalytic degradation test device,simulating different environmental conditions such as load,ambient temperature,and illumination intensity,which provides theoretical support for practical engineering.The experimental results indicate that when the ambient temperature is controlled at 25℃and the illumination intensity is 30 W/m^(2),the sample prepared by soaking recycled aggregates in a 0.8%TiO_(2)/LDHs suspension exhibits the highest photocatalytic degradation rate for NO gas,reaching 72.54%.Further investigation on the influence of environmental temperature reveals that,at 25℃,the maximum photocatalytic degradation rate for NO gas is 72.9%.Moreover,at an illumination intensity of 40 W/m^(2),the maximum photocatalytic degradation rate for NO gas is 87.08%.Additionally,after three repeated photocatalytic tests,the sample demonstrates good stability,with a photocatalytic degradation rate of 58%.The nitrogen content in the eluent obtained from soaking the sample was determined to be 0.0022 mol/L,with a recovery rate of 80%.The adsorption experiment demonstrates that the sample exhibits a favorable adsorption effect on nitrate ions,reaching a maximum of 56.8%.展开更多
The publisher regrets to inform that in the article of Advanced Powder Materials 4(2025)100261,the published Figs.3 and 5 belong to the initially submitted version,which should be replaced by the final version.The dif...The publisher regrets to inform that in the article of Advanced Powder Materials 4(2025)100261,the published Figs.3 and 5 belong to the initially submitted version,which should be replaced by the final version.The differences between the initial and final versions of these figures are described below.展开更多
Microporous MgO–MgAl_(2)O_(4)refractory aggregates were prepared using calcined MgO powder andα-Al_(2)O_(3)micro-powder as raw materials.The influence ofα-Al_(2)O_(3)micro-powder addition on the microstructures and...Microporous MgO–MgAl_(2)O_(4)refractory aggregates were prepared using calcined MgO powder andα-Al_(2)O_(3)micro-powder as raw materials.The influence ofα-Al_(2)O_(3)micro-powder addition on the microstructures and properties of the aggregates was investigated.The results indicated that the addition ofα-Al_(2)O_(3)micro-powder to MgO powder not only promoted more pores in the MgO powder to being enclosed,but also caused the pores among the MgO powder to become micronano scale by the formation of continuous microporous MgAl_(2)O_(4)bonding layers,which reduced the thermal conductivity of the aggregates.Furthermore,the microporous MgAl_(2)O_(4)can induce crack deflection and generate crack branching when subjected to thermal shock,thus improving the thermal shock resistance of the microporous aggregates.The sample with 12.1 wt.%α-Al_(2)O_(3)micro-powder addition exhibited the best comprehensive properties,with a bulk density of 3.44 g/cm^(3),a median pore size of 120.7 nm,a high flexural strength of 82.7 MPa,a high retention rate of flexural strength of 87.7%,and a thermal conductivity of 8.4 W/(m K)at 800°C.Compared to commercial fused magnesia and sintered magnesia,the thermal conductivity decreased by 47.2%and 18.4%at 800°C,respectively.展开更多
[Objective]The research aimed to provide scientific reference for reasonable utilization of polyacrylamide(PAM).[Method]After PAM treatment,the soil aggregates were classified through dry sieve analysis and the adsorp...[Objective]The research aimed to provide scientific reference for reasonable utilization of polyacrylamide(PAM).[Method]After PAM treatment,the soil aggregates were classified through dry sieve analysis and the adsorption capacity and desorption capacity of all soil aggregates to phosphorus at different phosphorus concentrations were analyzed.[Result] The phosphorus adsorption and desorption of soil sample treated by PAM declined. The amount of phosphorus adsorption increased with the increase of phosphorus concentration and this increase was fast in low phosphorus concentration area but slow in high phosphorus concentration area.At different phosphorus concentrations,adsorption showed a へ shape changing trend.The phosphorus adsorption was related to phosphorus concentration and the 2-3 mm aggregate had the highest desorption rate while 0.1-0.25 mm aggregate and 0.45-1 mm aggregate had lowest desorption rate.[Conclusion]The PAM treatment generated significant influence on phosphorus adsorption and analytic features of aggregate in all size fractions.展开更多
[Objective] This study was conducted to investigate the effects of tradition-al fertilization and formula fertilization by soil testing on the chemical forms of nitro-gen in dark brown soil and its distribution in dif...[Objective] This study was conducted to investigate the effects of tradition-al fertilization and formula fertilization by soil testing on the chemical forms of nitro-gen in dark brown soil and its distribution in different aggregates. [Method] A physi-co-chemistry method was adopted in a comparative study on the chemical forms of nitrogen and their distribution in different-sized aggregates of dark brown soil under traditional fertilization and formula fertilization by soil testing respectively. [Result] Compared with traditional fertilization in spring and autumn, the formula fertilization by soil testing averagely decreased, the total nitrogen in soil by 23.2% in spring and by 20% in autumn in the soil layer of 0-20 cm, by 48.8% in the layer of 20-40 cm. Ammonium nitrogen was so sensitive to the methods of fertilization that the content of ammonium nitrogen was reduced much more under formula fertitization by soil testing in autumn than under traditional fertilization. Nitrogen in soil under traditional fertilization pattern was mainly distributed in the aggregates of 0-0.25 and 0.5-1 mm, while in formula fertilization by soil testing it was mainly distributed in the aggregates of 0.25-0.5 and 0-0.25 mm. [Conclusion] The study proved that for-mula fertilization by soil testing helped to reduce the risk of nitrogen pol ution and had huge effects on the chemical forms and distribution of nitrogen in different ag-gregates in dark brown soil.展开更多
To investigate migration and evolution rules of coarse aggregates in the static compaction process, an algorithm of generating digital coarse aggregates that can reflect real morphology( such as shape, size and fract...To investigate migration and evolution rules of coarse aggregates in the static compaction process, an algorithm of generating digital coarse aggregates that can reflect real morphology( such as shape, size and fracture surface) of aggregate particles, is represented by polyhedral particles based on the discrete element method( DEM). A digital specimen comprised of aggregates and air voids is developed. In addition,a static compaction model consisting of a digital specimen and three plates is constructed and a series of evaluation indices such as mean contact force σMCF, wall stress in direction of zcoordinate σWSZZ, porosity and coordination numbers are presented to investigate the motion rules of coarse aggregates at different compaction displacements of 7. 5, 15 and 30 mm. The three-dimensional static compaction model is also verified with laboratory measurements. The results indicate that the compaction displacements are positively related to σMCF and σWSZZ, which increase gradually with the increase in iterative steps. When the compaction proceeds, the digital specimen porosity decreases, but the coordination number increases. The variation ranges of these four indices are different at different compaction displacements. This study provides a method to analyze the compaction mechanism of particle materials such as asphalt mixture and graded broken stone.展开更多
We investigated the size distribution of water-stable aggregates and the soil carbon, nitrogen and phosphorus concentration over aggregate size fractions based on a long-term (1990-2006) fertilization experiment in ...We investigated the size distribution of water-stable aggregates and the soil carbon, nitrogen and phosphorus concentration over aggregate size fractions based on a long-term (1990-2006) fertilization experiment in a reddish paddy soil. The results showed that the largest water-stable aggregate (WSA) (〉5 mm) and the smallest WSA (〈0.25 mm) took up the first largest proportion (38.3%) and the second largest proportion (23.3%), respectively. Application of organic materials increased the proportion of the large WSA (〉2 mm) and decreased the proportion of the small WSA (〈1 ram), resulting in an increase in the mean weight diameter of WSA, whereas application of chemical fertilizer had little effect. Application of organic materials, especially combined with chemical fertilizers, increased total carbon, nitrogen and phosphorus concentrations in all sizes of WSA, and total carbon, nitrogen and phosphorus were prone to concentrate in the large WSA. Further more, application of organic materials improved the supply effectiveness of available phosphorus, whereas had little influence on the labile carbon in WSA. Application of chemical fertilizers improved concentrations of total and available phosphorus in all sizes of WSA, whereas had little influence on total carbon and nitrogen contents. Economical fertilization model maintained the soil fertility when compared with full dose of chemical fertilizers, indicating that using organic materials could reduce chemical fertilizers by about one third.展开更多
Bauxite residue is a highly alkaline byproduct which is routinely discarded at residue disposal areas. Improving soil formation process to revegetate the special degraded lands is a promising strategy for sustainable ...Bauxite residue is a highly alkaline byproduct which is routinely discarded at residue disposal areas. Improving soil formation process to revegetate the special degraded lands is a promising strategy for sustainable management of the refining industry. A laboratory incubation experiment was used to evaluate the effects of gypsum and vermicompost on stable aggregate formation of bauxite residue. Aggregate size distribution was quantified by fractal theory, whilst residue microstructure was determined by scanning electron microscopy and synchrotron-based X-ray micro-computed tomography. Amendments addition increased the content of macro-aggregates(> 250 μm) and enhanced aggregate stability of bauxite residue. Following gypsum and vermicompost addition, fractal dimension decreased from 2.84 to 2.77, which indicated a more homogeneous distribution of aggregate particles. Images from scanning electron microscopy and three-dimensional microstructure demonstrated that amendments stimulate the formation of improved structure in residue aggregates. Pore parameters including porosity, pore throat surface area, path length, and path tortuosity increased under amendment additions. Changes in aggregate size distribution and microstructure of bauxite residue indicated that additions of gypsum and vermicompost were beneficial to physical condition of bauxite residue which may enhance the ease of vegetation.展开更多
There is limited information on carbon sequestration efficiency(CSE)of soil aggregates in upland and paddy soils under long-term fertilization regimes.In a red soil region of southern China,an upland soil experiment s...There is limited information on carbon sequestration efficiency(CSE)of soil aggregates in upland and paddy soils under long-term fertilization regimes.In a red soil region of southern China,an upland soil experiment started in 1986 and a paddy soil experiment commenced in 1981.These experiments were conducted using different fertilization treatments.After 30 years,soil organic carbon(SOC)content and stock of different aggregate components were analyzed.The results showed that the SOC contents and stocks in upland soil were lower than in paddy soil.In both upland and paddy soils,the SOC contents and stocks of all aggregate components in NPKM(combined treatment with chemical nitrogen(N),phosphorus(P),potassium(K)fertilizers and manure)were the highest among all treatments.Compared with CK(no fertilizer),SOC content of all aggregate components in NPKM was increased by 13.21–63.11%and 19.13–73.33%in upland and paddy soils,respectively.Meanwhile,the change rates in SOC stock of all aggregate components in upland soil were lower than in paddy soil,although the change rate of SOC stock of all aggregate components in NPKM was higher than in other treatments.Furthermore,a linear equation could fit the relationships between carbon(C)input and change rate of SOC stock(P<0.05).Results indicated that the sum of CSE from all aggregate components in upland soil(16.02%)was higher than that of paddy soil(15.12%)in the same climatic condition and from the same parent material.However,the CSEs from all aggregates were higher than that of bulk soil,although the result from bulk soil also showed that the CSE of upland soil was higher than that of paddy soil.展开更多
Aggregation and structure play key roles in water-holding capacity and stability of soils.In this study,the incorporation of carbon(C) from switchgrass biochar into stable aggregate size fractions was assessed in an A...Aggregation and structure play key roles in water-holding capacity and stability of soils.In this study,the incorporation of carbon(C) from switchgrass biochar into stable aggregate size fractions was assessed in an Aridisol(from Colorado,USA) dominated by 2:1 clays and an Alfisol(from Virginia,USA) containing weathered mixed 1:1 and 2:1 mineralogy,to evaluate the effect of biochar addition on soil characteristics.The biochar was applied at 4 levels,0,25,50,and 100 g kg^(-1),to the soils grown with wheat in a growth chamber experiment.The changes in soil strength and water-holding capacity using water release curves were measured.In the Colorado soil,the proportion of soil occurring in large aggregates decreased,with concomitant increases in small size fractions.No changes in aggregate size fractions occurred in the Virginia soil.In the Colorado soil,C content increased from 3.3 to 16.8 g kg^(-1),whereas in the<53 μm fraction C content increased from 5.7 to 22.6 g kg^(-1) with 100 g kg^(-1)biochar addition.In the Virginia soil,C content within aggregate size fractions increased for each size fraction,except the>2 000 μm fraction.The greatest increase(from 6.2 to 22.0 g kg^(-1)) occurred in the 53–250 μm fraction.The results indicated that C was incorporated into larger aggregates in the Virginia soil,but remained largely unassociated to soil particles in the Colorado soil.Biochar addition had no significant effect on water-holding capacity or strength measurements.Adding biochar to more weathered soils with high native soil organic content may result in greater stabilization of incorporated C and result in less loss because of erosion and transport,compared with the soils dominated by 2:1 clays and low native soil organic content.展开更多
Struvite crystallization is a promising method to remove and recover phosphorus from wastewater to ease both the scarcity of phosphorus rock resources and water eutrophication worldwide. To date, although various kind...Struvite crystallization is a promising method to remove and recover phosphorus from wastewater to ease both the scarcity of phosphorus rock resources and water eutrophication worldwide. To date, although various kinds of reactor systems have been developed, supporting methods are required to control the stmvite fines flushing out of the reactors. As an intrinsic property, aggregation is normally disregarded in the struvite crystallization process, although it is the key factor in final particle size and therefore guarantees phosphorus recovery efficiency. The present study developed a method to analyze the characteristics of struvite aggregates using fractal geometry, and the influence of operational parameters on struvite aggregation was evaluated. Due to its typical orthorhombic molecular structure, struvite particles are prone to crystallize into needle or rod shapes, and aggregate at the comers or edges of crystals. The determined fractal dimension (Dpf) of struvite aggregates was 1.52-1.31, with the corresponding range of equivalent diameter (d0.5) at 295.9-85.4 Ixm. Aggregates formed in relatively low phosphorus concentrations (3.0-5.0 mmol/L) and mildly alkaline conditions (pH 9.0-9.5) displayed relatively compact structures, large aggregate sizes and high aggregation strength. Increasing pH values led to continuous decrease of aggregate sizes, while the variation of Dpf was insignificant. As to the aggregate evolution, fast growth in a short time followed by a long steady stage was observed.展开更多
Tillage greatly influences the aggregation and stability of soil aggregates. This study investigated the effects of conservation tillage on soil aggregate characteristics. During a four-year study period (2001-2005)...Tillage greatly influences the aggregation and stability of soil aggregates. This study investigated the effects of conservation tillage on soil aggregate characteristics. During a four-year study period (2001-2005), soils were sampled from no-tillage (NT), rotary tillage (RT), and conventional tillage (moldboard tillage, CT) plots at the Luancheng Agriculture and Ecology Experimental Station in Hebei Province, China, and the amount, size distribution, and fractal dimension of the aggregates were examined by dry and wet sieving methods. The results indicated that NT significantly increased the topsoil (0-5 cm) bulk density (BD), while RT maintained a lower BD as CT. Dry sieving results showed that NT had higher macro-aggregate content (R0.25), and a larger mean weight diameter (MWD) and geometric mean diameter (GMD) than other treatments in the 0-10 cm layer, while RT showed no difference from CT. In wet sieving, results showed that most of the aggregates were unstable, and the MWD and GMD of water-table aggregates showed the trend of NT 〉 RT 〉 CT. At 0-5 cm layer, the fractal dimension (D) of water-stable aggregates under NT was lower than it was under RT and CT. At 5-10 cm, RT yielded the highest D, and showed stability. After four years, NT increased the aggregation and the stability of soil aggregates; while due to intense disturbance, the aggregation and stability of the upper layer (0-10 cm) under RT and CT decreased.展开更多
In agricultural systems, maintenance of soil organic matter has long been recognized as a strategy to reduce soil degradation. Manure amendments and green manures are management practices that can increase some nutrie...In agricultural systems, maintenance of soil organic matter has long been recognized as a strategy to reduce soil degradation. Manure amendments and green manures are management practices that can increase some nutrient contents and improve soil aggregation. We investigated the effects of 28 yr of winter planted green manure on soil aggregate-size distribution and aggregateassociated carbon(C) and nitrogen(N). The study was a randomized completed block design with three replicates. The treatments included rice-rice-fallow, rice-rice-rape, rice-rice-Chinese milk vetch and rice-rice-ryegrass. The experiment was established in 1982 on a silty light clayey paddy soil derived from Quaternary red clay(classified as Fe-Accumuli-Stagnic Anthrosols) with continuous early and late rice. In 2009, soil samples were collected(0-15 cm depth) from the field treatment plots and separated into water-stable aggregates of different sizes(i.e., 〉5, 2-5, 1-2, 0.5-1, 0.25-0.5 and 〈0.25 mm) by wet sieving. The long-term winter planted green manure significantly increased total C and N, and the formation of the 2-5-mm water-stable aggregate fraction. Compared with rice-rice-rape, rice-rice-Chinese milk vetch and rice-rice-ryegrass, the rice-rice-fallow significantly reduced 2-5-mm water-stable aggregates, with a significant redistribution of aggregates into micro-aggregates. Long-term winter planted green manure obviously improved C/N ratio and macro-aggregate-associated C and N. The highest contribution to soil fertility was from macro-aggregates of 2-5 mm in most cases.展开更多
Effects of calcined coal gangue (CG) aggregates treated by the surface thermal activation on the flowability and strength, and paste-CG aggregate interfaces of the cement-based material were investigated. The experi...Effects of calcined coal gangue (CG) aggregates treated by the surface thermal activation on the flowability and strength, and paste-CG aggregate interfaces of the cement-based material were investigated. The experimental results show that the compressive and flexural strength of the cement-based material with the calcined CG aggregates is much higher than that of the material with the natural CG aggregates, but the flowability of the material with calcined CG is significantly reduced with the calcined time. The strength of the material with the calcined CG aggregates only increases little with the calcined time at the same w/c ratio, but is reduced with the calcined time at the same flowability. The CG aggregates calcined by the surface thermal activation obviously overcomes the disadvantages of fully calcined CG.展开更多
Aggregates of cerium dioxide nanoparticles(nano-CeO_2) were successfully prepared via a facile solvothermal process in this study. The crystallographic information and morphological information of nano-CeO_2 were syst...Aggregates of cerium dioxide nanoparticles(nano-CeO_2) were successfully prepared via a facile solvothermal process in this study. The crystallographic information and morphological information of nano-CeO_2 were systematically studied by X-ray diffraction(XRD),transmission electron microscopy(TEM), laser particle size analyzer(LA) and specific surface area and pore size analyzer during the solvothermal process. Among all the obtained samples, the 18-h solvothermal-prepared nano-CeO_2 aggregates show the best crystallinity and the largest specific surface area of 110.92 m^2·g^(-1). Owing to the high activity derived from the high specific surface area of the aggregates, the application as arsenic(As) adsorption was also studied. The adsorption efficiency of arsenic by nano-CeO_2 aggregates was established as the function of adsorbent dose, then pH value and at last adsorption time.The results indicate that the nano-CeO_2 aggregates show a high efficiency in removing arsenic from low As concentration solution, from which the nano-CeO_2 adsorbent could be easily separated. In addition, the adsorption kinetics is best fitted to pseudo-second-order model(R^2 = 0.99999).展开更多
Promoting soil carbon sequestration in agricultural land is one of the viable strategies to decelerate the observed climate changes. However, soil physical disturbances have aggravated the soil degradation process by ...Promoting soil carbon sequestration in agricultural land is one of the viable strategies to decelerate the observed climate changes. However, soil physical disturbances have aggravated the soil degradation process by accelerating erosion. Thus, reducing the magnitude and intensity of soil physical disturbance through appropriate farming/agricultural systems is essential to management of soil carbon sink capacity of agricultural lands. Four sites of different land use types/tillage practices, i) no-till (NT) corn (Zea mays L.) (NTC), ii) conventional till (CT) corn (CTC), iii) pastureland (PL), and iv) native forest (NF), were selected at the North Appalachian Experimental Watershed Station, Ohio, USA to assess the impact of NT farming on soil aggregate indices including water-stable aggregation, mean weight diameter (MWD) and geometric mean diameter (GMD), and soil organic carbon and total nitrogen contents. The NTC plots received cow manure additions (about 15 t ha-1) every other year. The CTC plots involved disking and chisel ploughing and liquid fertilizer application (110 L ha-l). The results showed that both water-stable aggregation and MWD were greater in soil for NTC than for CTC. In the 0-10 cm soil layer, the 〉 4.75-mm size fraction dominated NTC and was 46% more than that for CTC, whereas the 〈 0.25-mm size fraction was 380% more for CTC than for NTC. The values of both MWD and GMD in soil for NTC (2.17 mm and 1.19 mm, respectively) were higher than those for CTC (1.47 and 0.72 mm, respectively) in the 0-10 cm soil layer. Macroaggregates contained 6%-42% and 13%-43% higher organic carbon and total nitrogen contents, respectively, than microaggregates in soil for all sites. Macroaggregates in soil for NTC contained 40% more organic carbon and total nitrogen over microaggregates in soil for CTC. Therefore, a higher proportion of microaggregates with lower organic carbon contents created a carbon-depleted environment for CTC. In contrast, soil for NTC had more aggregation and contained higher organic carbon content within water-stable aggregates. The soil organic carbon and total nitrogen stocks (Mg ha-1) among the different sites followed the trend of NF 〉 PL 〉 NTC 〉 CTC, being 35%-46% more for NTC over CTC. The NT practice enhanced soil organic carbon content over the CT practice and thus was an important strategy of carbon sequestration in cropland soils.展开更多
基金funded by the Inner Mongolia Local Science and Technology Development Fund Projects,China(2021GG0393)。
文摘The agro-pastoral ecotone epitomizes the ecologically fragile semi-arid zone,where the soil microbiomes play a pivotal role in regulating its multifunctionality.However,whether and how changes in soil structure and organic matter composition under different land uses affect microbial community structure remain unclear.Here,land-use types in the agro-pastoral ecotone,including shrubland(BF),artificial grassland(ArG),abandoned grassland(AbG),and maize farmland(MA),were chosen to explore the response relationships between soil microbial communities and the aggregates and dissolved organic matter(DOM)composition.The results showed that compared to MA,the macroaggregates in BF,AbG,and ArG were increased by 123.0,92.79,and 63.71%,respectively,while MA soil had the greatest abundance of<100μm particles.The higher aromatic carbon with high aromaticity and molecular weight in BF soil DOM contributed to its highest mineral-associated organic carbon level(12.61 g kg^(-1)),while MA soil organic carbon had highly efficient decomposition due to its high content of aliphatic and carboxy carbon,so it is prone to loss from the active carbon pools.The transition in land use from shrubland to grassland and farmland has facilitated the conversion of stable aromatic carbon to unstable carboxy carbon.The taxonomic analysis revealed that soil bacterial and fungal communities in the four land uses were dominated by Proteobacteria,Actinobacteriota,Chloroflexi,and Ascomycota.More taxonomic groups from phylum to family were enriched in BF soil.The DOM components and organic carbon are crucial variables shaping the composition of soil bacterial communities,jointly explaining 61.66% of the variance,while aggregates are important variables driving the composition of fungal communities,with an explanation rate of 20.49%.Our results suggest that DOM components and aggregates impact the soil microbial structure;and the transition in land use from agricultural land to grassland and shrubland in the agro-pastoral ecotone enhances aggregate stability,carbon sequestration potential,and microbial diversity.
基金supported by the Research Fund of Jianghan Univer-sity(2024JCYJ02)the Graduate Scientific Research Foundation of Jianghan University(KYCXJJ202428)+1 种基金the Excellent Discipline Cultiva-tion Project funded by Jianghan University(2023XKZ013)the Na-tional Natural Science Foundation of China(Grant No.22179052).
文摘Lithium (Li) metal batteries (LMBs) featuring ultrahigh energy densities are expected as ones of the mostprominent devices for future energy storage applications. Nevertheless, the practical application of LMBs is stillplagued by the poor interfacial stability of Li metal anode. Inorganic-rich interlayer derived from anion decom-positionin advanced liquid electrolytes is demonstrated as an efficient approach to stabilize the Li metal anode,however, is electrolyte-dependent with limited application conditions due to inappropriate electrolyte properties.Herein, an efficient structuration strategy is proposed to fabricate an electrolyte-independent and sustainedinorganic-rich layer, by embedding a type of functional anion aggregates consisting of selected anions ionicallybonded to polymerized cation clusters. The anion aggregates can progressively release anions to react with Liþand form key components boosting the structural stability and Liþ transfer ability of the artificial layer uponcycling. This self-reinforcing working mechanism endows the artificial layer with a sustained inorganic-richnature and promising Li protective ability during long-term cycling, while the electrolyte-independent propertyenables its applications in LMBs using conventional low concentration electrolytes and all-solid-state LMBs withsignificantly enhanced performances. This strategy establishes an alternative designing route of Li protectivelayers for reliable LMBs.
基金National Natural Science Foundation of China(Nos.42171130 and 42301158)Pilot Project of China’s Strength in Transportation for the Central Research Institute(No.QG2021-1-4-7)National Key Technology Research and Development Program of the Ministry of Science and Technology of China(No.2021YFB2601200).
文摘Sulfate attack-induced expansion of cement-treated aggregates in seasonally frozen regions is a well-known issue which causes continuous expansion in railway subgrades,and particularly in high-speed railways.Accordingly,we investigated the influence of material proportions,the number of freeze-thaw(FT)cycles,and temperature gradients on the expansion mechanism of sulfate attack on cement-treated aggregates subjected to FT cycles.The conditions,laws,and dominant factors causing the expansion of aggregates were analyzed through swelling tests.The results indicate that under FT cycles,3%content cement-treated graded macadam only experiences slight deformation.The maximum strain of graded macadam attacked by 1%sodium sulfate content in each FT cycle is significantly larger than that of 3%content cement-treated graded macadam attacked by 1%sodium sulfate content.Using scanning electron microscopy,needle-like crystals were observed during sulfate attack of cement-treated graded macadam.Through quantitative analysis,we determined the recoverable and unrecoverable deformations of graded macadam under FT cycles.For graded macadam under sulfate attack,the expansion is mainly induced by periodic frost heave and salt expansion,as well as salt migration.For cement-treated graded macadam under sulfate attack,the expansion is mainly induced by chemical attack and salt migration.This study can serve as a reference for future research on the mechanics of sulfate attack on cement-treated aggregates that experience FT cycles,and provide theoretical support for methods that remediate the expansion induced by sulfate attack.
基金supported by the National Natural Science Foundation of China(Nos.42222102,41971136,and 42171107)the Jilin Provincial Department of Science and Technology,China(No.20230508089RC)the Professional Association of the Alliance of International Science Organizations(No.ANSO-PA-2020-14).
文摘Global climate change exerts profound effects on snow cover,with consequential impacts on microbial activities and the stability of soil organic carbon(SOC)within aggregates.Northern peatlands are significant carbon reservoirs,playing a critical role in mitigating climate change.However,the effects of snow variations on microbial-mediated SOC stability within aggregates in peatlands remain inadequately understood.Here,an in-situ field experiment manipulating snow conditions(i.e.,snow removal and snow cover)was conducted to investigate how snow variations affect soil microbial community and the associated SOC stability within soil aggregates(>2,0.25-2,and<0.25 mm)in a peatland of Northeast China.The results showed that snow removal significantly increased the SOC content and stability within aggregates.Compared to the soils with snow cover,snow removal resulted in decreased soil average temperatures in the topsoil(0-30 cm depth)and subsoil(30-60 cm depth)(by 1.48 and 1.34°C,respectively)and increased freeze-thaw cycles(by 11 cycles),consequently decreasing the stability of aggregates in the topsoil and subsoil(by 23.68%and 6.85%,respectively).Furthermore,more recalcitrant carbon and enhanced SOC stability were present in microaggregates(<0.25 mm)at two soil depths.Moreover,reductions in bacterial diversity and network stability were observed in response to snow removal.Structural equation modeling analysis demonstrated that snow removal indirectly promoted(P<0.01)SOC stability by regulating carbon to nitrogen(C:N)ratio within aggregates.Overall,our study suggested that microaggregate protection and an appropriate C:N ratio enhanced carbon sequestration in response to climate change.
基金Funded by the National Natural Science Foundation of China(No.52478281)the Natural Science Foundation of Zhejiang Province(No.LZ22E080003)the Science and Technology Project of Zhejiang Provincial Department of Transport(No.202225)。
文摘The degradation performance of pervious concrete containing TiO_(2)/LDHs-loaded recycled aggregates for NO gas was analyzed using a gas phase catalytic degradation test device,simulating different environmental conditions such as load,ambient temperature,and illumination intensity,which provides theoretical support for practical engineering.The experimental results indicate that when the ambient temperature is controlled at 25℃and the illumination intensity is 30 W/m^(2),the sample prepared by soaking recycled aggregates in a 0.8%TiO_(2)/LDHs suspension exhibits the highest photocatalytic degradation rate for NO gas,reaching 72.54%.Further investigation on the influence of environmental temperature reveals that,at 25℃,the maximum photocatalytic degradation rate for NO gas is 72.9%.Moreover,at an illumination intensity of 40 W/m^(2),the maximum photocatalytic degradation rate for NO gas is 87.08%.Additionally,after three repeated photocatalytic tests,the sample demonstrates good stability,with a photocatalytic degradation rate of 58%.The nitrogen content in the eluent obtained from soaking the sample was determined to be 0.0022 mol/L,with a recovery rate of 80%.The adsorption experiment demonstrates that the sample exhibits a favorable adsorption effect on nitrate ions,reaching a maximum of 56.8%.
文摘The publisher regrets to inform that in the article of Advanced Powder Materials 4(2025)100261,the published Figs.3 and 5 belong to the initially submitted version,which should be replaced by the final version.The differences between the initial and final versions of these figures are described below.
基金financially supported by the Key Projects of the National Natural Science Foundation of China(No.U21A2058)the Innovation Group Project of Natural Science Foundation of Hubei Province(2025AFA016).
文摘Microporous MgO–MgAl_(2)O_(4)refractory aggregates were prepared using calcined MgO powder andα-Al_(2)O_(3)micro-powder as raw materials.The influence ofα-Al_(2)O_(3)micro-powder addition on the microstructures and properties of the aggregates was investigated.The results indicated that the addition ofα-Al_(2)O_(3)micro-powder to MgO powder not only promoted more pores in the MgO powder to being enclosed,but also caused the pores among the MgO powder to become micronano scale by the formation of continuous microporous MgAl_(2)O_(4)bonding layers,which reduced the thermal conductivity of the aggregates.Furthermore,the microporous MgAl_(2)O_(4)can induce crack deflection and generate crack branching when subjected to thermal shock,thus improving the thermal shock resistance of the microporous aggregates.The sample with 12.1 wt.%α-Al_(2)O_(3)micro-powder addition exhibited the best comprehensive properties,with a bulk density of 3.44 g/cm^(3),a median pore size of 120.7 nm,a high flexural strength of 82.7 MPa,a high retention rate of flexural strength of 87.7%,and a thermal conductivity of 8.4 W/(m K)at 800°C.Compared to commercial fused magnesia and sintered magnesia,the thermal conductivity decreased by 47.2%and 18.4%at 800°C,respectively.
文摘[Objective]The research aimed to provide scientific reference for reasonable utilization of polyacrylamide(PAM).[Method]After PAM treatment,the soil aggregates were classified through dry sieve analysis and the adsorption capacity and desorption capacity of all soil aggregates to phosphorus at different phosphorus concentrations were analyzed.[Result] The phosphorus adsorption and desorption of soil sample treated by PAM declined. The amount of phosphorus adsorption increased with the increase of phosphorus concentration and this increase was fast in low phosphorus concentration area but slow in high phosphorus concentration area.At different phosphorus concentrations,adsorption showed a へ shape changing trend.The phosphorus adsorption was related to phosphorus concentration and the 2-3 mm aggregate had the highest desorption rate while 0.1-0.25 mm aggregate and 0.45-1 mm aggregate had lowest desorption rate.[Conclusion]The PAM treatment generated significant influence on phosphorus adsorption and analytic features of aggregate in all size fractions.
文摘[Objective] This study was conducted to investigate the effects of tradition-al fertilization and formula fertilization by soil testing on the chemical forms of nitro-gen in dark brown soil and its distribution in different aggregates. [Method] A physi-co-chemistry method was adopted in a comparative study on the chemical forms of nitrogen and their distribution in different-sized aggregates of dark brown soil under traditional fertilization and formula fertilization by soil testing respectively. [Result] Compared with traditional fertilization in spring and autumn, the formula fertilization by soil testing averagely decreased, the total nitrogen in soil by 23.2% in spring and by 20% in autumn in the soil layer of 0-20 cm, by 48.8% in the layer of 20-40 cm. Ammonium nitrogen was so sensitive to the methods of fertilization that the content of ammonium nitrogen was reduced much more under formula fertitization by soil testing in autumn than under traditional fertilization. Nitrogen in soil under traditional fertilization pattern was mainly distributed in the aggregates of 0-0.25 and 0.5-1 mm, while in formula fertilization by soil testing it was mainly distributed in the aggregates of 0.25-0.5 and 0-0.25 mm. [Conclusion] The study proved that for-mula fertilization by soil testing helped to reduce the risk of nitrogen pol ution and had huge effects on the chemical forms and distribution of nitrogen in different ag-gregates in dark brown soil.
基金The National Natural Science Foundation of China(No.51108081)
文摘To investigate migration and evolution rules of coarse aggregates in the static compaction process, an algorithm of generating digital coarse aggregates that can reflect real morphology( such as shape, size and fracture surface) of aggregate particles, is represented by polyhedral particles based on the discrete element method( DEM). A digital specimen comprised of aggregates and air voids is developed. In addition,a static compaction model consisting of a digital specimen and three plates is constructed and a series of evaluation indices such as mean contact force σMCF, wall stress in direction of zcoordinate σWSZZ, porosity and coordination numbers are presented to investigate the motion rules of coarse aggregates at different compaction displacements of 7. 5, 15 and 30 mm. The three-dimensional static compaction model is also verified with laboratory measurements. The results indicate that the compaction displacements are positively related to σMCF and σWSZZ, which increase gradually with the increase in iterative steps. When the compaction proceeds, the digital specimen porosity decreases, but the coordination number increases. The variation ranges of these four indices are different at different compaction displacements. This study provides a method to analyze the compaction mechanism of particle materials such as asphalt mixture and graded broken stone.
基金funded by the Knowledge Innovativation Program of the Chinese Academy of Sciences (KZCX2-YW-423)the National Basic Research Program of China (2005CB121106)
文摘We investigated the size distribution of water-stable aggregates and the soil carbon, nitrogen and phosphorus concentration over aggregate size fractions based on a long-term (1990-2006) fertilization experiment in a reddish paddy soil. The results showed that the largest water-stable aggregate (WSA) (〉5 mm) and the smallest WSA (〈0.25 mm) took up the first largest proportion (38.3%) and the second largest proportion (23.3%), respectively. Application of organic materials increased the proportion of the large WSA (〉2 mm) and decreased the proportion of the small WSA (〈1 ram), resulting in an increase in the mean weight diameter of WSA, whereas application of chemical fertilizer had little effect. Application of organic materials, especially combined with chemical fertilizers, increased total carbon, nitrogen and phosphorus concentrations in all sizes of WSA, and total carbon, nitrogen and phosphorus were prone to concentrate in the large WSA. Further more, application of organic materials improved the supply effectiveness of available phosphorus, whereas had little influence on the labile carbon in WSA. Application of chemical fertilizers improved concentrations of total and available phosphorus in all sizes of WSA, whereas had little influence on total carbon and nitrogen contents. Economical fertilization model maintained the soil fertility when compared with full dose of chemical fertilizers, indicating that using organic materials could reduce chemical fertilizers by about one third.
基金supported by the National Natural Science Foundation of China (No. 41701587)
文摘Bauxite residue is a highly alkaline byproduct which is routinely discarded at residue disposal areas. Improving soil formation process to revegetate the special degraded lands is a promising strategy for sustainable management of the refining industry. A laboratory incubation experiment was used to evaluate the effects of gypsum and vermicompost on stable aggregate formation of bauxite residue. Aggregate size distribution was quantified by fractal theory, whilst residue microstructure was determined by scanning electron microscopy and synchrotron-based X-ray micro-computed tomography. Amendments addition increased the content of macro-aggregates(> 250 μm) and enhanced aggregate stability of bauxite residue. Following gypsum and vermicompost addition, fractal dimension decreased from 2.84 to 2.77, which indicated a more homogeneous distribution of aggregate particles. Images from scanning electron microscopy and three-dimensional microstructure demonstrated that amendments stimulate the formation of improved structure in residue aggregates. Pore parameters including porosity, pore throat surface area, path length, and path tortuosity increased under amendment additions. Changes in aggregate size distribution and microstructure of bauxite residue indicated that additions of gypsum and vermicompost were beneficial to physical condition of bauxite residue which may enhance the ease of vegetation.
基金supported by the National Key Research and Development Program of China (2016YFD0200101 and 2016YFD0300901)the National Natural Science Foundation of China (41671301 and 41371293)the Innovation Plan of Scientific and Research in Modern Agriculture, Jiangxi Province, China (JXXTCX2015003-005)
文摘There is limited information on carbon sequestration efficiency(CSE)of soil aggregates in upland and paddy soils under long-term fertilization regimes.In a red soil region of southern China,an upland soil experiment started in 1986 and a paddy soil experiment commenced in 1981.These experiments were conducted using different fertilization treatments.After 30 years,soil organic carbon(SOC)content and stock of different aggregate components were analyzed.The results showed that the SOC contents and stocks in upland soil were lower than in paddy soil.In both upland and paddy soils,the SOC contents and stocks of all aggregate components in NPKM(combined treatment with chemical nitrogen(N),phosphorus(P),potassium(K)fertilizers and manure)were the highest among all treatments.Compared with CK(no fertilizer),SOC content of all aggregate components in NPKM was increased by 13.21–63.11%and 19.13–73.33%in upland and paddy soils,respectively.Meanwhile,the change rates in SOC stock of all aggregate components in upland soil were lower than in paddy soil,although the change rate of SOC stock of all aggregate components in NPKM was higher than in other treatments.Furthermore,a linear equation could fit the relationships between carbon(C)input and change rate of SOC stock(P<0.05).Results indicated that the sum of CSE from all aggregate components in upland soil(16.02%)was higher than that of paddy soil(15.12%)in the same climatic condition and from the same parent material.However,the CSEs from all aggregates were higher than that of bulk soil,although the result from bulk soil also showed that the CSE of upland soil was higher than that of paddy soil.
文摘Aggregation and structure play key roles in water-holding capacity and stability of soils.In this study,the incorporation of carbon(C) from switchgrass biochar into stable aggregate size fractions was assessed in an Aridisol(from Colorado,USA) dominated by 2:1 clays and an Alfisol(from Virginia,USA) containing weathered mixed 1:1 and 2:1 mineralogy,to evaluate the effect of biochar addition on soil characteristics.The biochar was applied at 4 levels,0,25,50,and 100 g kg^(-1),to the soils grown with wheat in a growth chamber experiment.The changes in soil strength and water-holding capacity using water release curves were measured.In the Colorado soil,the proportion of soil occurring in large aggregates decreased,with concomitant increases in small size fractions.No changes in aggregate size fractions occurred in the Virginia soil.In the Colorado soil,C content increased from 3.3 to 16.8 g kg^(-1),whereas in the<53 μm fraction C content increased from 5.7 to 22.6 g kg^(-1) with 100 g kg^(-1)biochar addition.In the Virginia soil,C content within aggregate size fractions increased for each size fraction,except the>2 000 μm fraction.The greatest increase(from 6.2 to 22.0 g kg^(-1)) occurred in the 53–250 μm fraction.The results indicated that C was incorporated into larger aggregates in the Virginia soil,but remained largely unassociated to soil particles in the Colorado soil.Biochar addition had no significant effect on water-holding capacity or strength measurements.Adding biochar to more weathered soils with high native soil organic content may result in greater stabilization of incorporated C and result in less loss because of erosion and transport,compared with the soils dominated by 2:1 clays and low native soil organic content.
基金supported by the Hi-Tech Research and Development Program(863)of China(No.2011AA060902)the Xiamen Science and Technology Planning Project(No.3502Z20132016)
文摘Struvite crystallization is a promising method to remove and recover phosphorus from wastewater to ease both the scarcity of phosphorus rock resources and water eutrophication worldwide. To date, although various kinds of reactor systems have been developed, supporting methods are required to control the stmvite fines flushing out of the reactors. As an intrinsic property, aggregation is normally disregarded in the struvite crystallization process, although it is the key factor in final particle size and therefore guarantees phosphorus recovery efficiency. The present study developed a method to analyze the characteristics of struvite aggregates using fractal geometry, and the influence of operational parameters on struvite aggregation was evaluated. Due to its typical orthorhombic molecular structure, struvite particles are prone to crystallize into needle or rod shapes, and aggregate at the comers or edges of crystals. The determined fractal dimension (Dpf) of struvite aggregates was 1.52-1.31, with the corresponding range of equivalent diameter (d0.5) at 295.9-85.4 Ixm. Aggregates formed in relatively low phosphorus concentrations (3.0-5.0 mmol/L) and mildly alkaline conditions (pH 9.0-9.5) displayed relatively compact structures, large aggregate sizes and high aggregation strength. Increasing pH values led to continuous decrease of aggregate sizes, while the variation of Dpf was insignificant. As to the aggregate evolution, fast growth in a short time followed by a long steady stage was observed.
文摘Tillage greatly influences the aggregation and stability of soil aggregates. This study investigated the effects of conservation tillage on soil aggregate characteristics. During a four-year study period (2001-2005), soils were sampled from no-tillage (NT), rotary tillage (RT), and conventional tillage (moldboard tillage, CT) plots at the Luancheng Agriculture and Ecology Experimental Station in Hebei Province, China, and the amount, size distribution, and fractal dimension of the aggregates were examined by dry and wet sieving methods. The results indicated that NT significantly increased the topsoil (0-5 cm) bulk density (BD), while RT maintained a lower BD as CT. Dry sieving results showed that NT had higher macro-aggregate content (R0.25), and a larger mean weight diameter (MWD) and geometric mean diameter (GMD) than other treatments in the 0-10 cm layer, while RT showed no difference from CT. In wet sieving, results showed that most of the aggregates were unstable, and the MWD and GMD of water-table aggregates showed the trend of NT 〉 RT 〉 CT. At 0-5 cm layer, the fractal dimension (D) of water-stable aggregates under NT was lower than it was under RT and CT. At 5-10 cm, RT yielded the highest D, and showed stability. After four years, NT increased the aggregation and the stability of soil aggregates; while due to intense disturbance, the aggregation and stability of the upper layer (0-10 cm) under RT and CT decreased.
基金funded by the Special Fund for AgroScientific Research in the Public Interest of China (20110300508, 201203030)supported in partial by the Key Technologies R&D Program of China during the 12th Five-Year Plan period (2012BAD05B05-3, 2013BAD07B11)the International Plant Nutrition Institute, Canada (IPNI China Program: Hunan-17)
文摘In agricultural systems, maintenance of soil organic matter has long been recognized as a strategy to reduce soil degradation. Manure amendments and green manures are management practices that can increase some nutrient contents and improve soil aggregation. We investigated the effects of 28 yr of winter planted green manure on soil aggregate-size distribution and aggregateassociated carbon(C) and nitrogen(N). The study was a randomized completed block design with three replicates. The treatments included rice-rice-fallow, rice-rice-rape, rice-rice-Chinese milk vetch and rice-rice-ryegrass. The experiment was established in 1982 on a silty light clayey paddy soil derived from Quaternary red clay(classified as Fe-Accumuli-Stagnic Anthrosols) with continuous early and late rice. In 2009, soil samples were collected(0-15 cm depth) from the field treatment plots and separated into water-stable aggregates of different sizes(i.e., 〉5, 2-5, 1-2, 0.5-1, 0.25-0.5 and 〈0.25 mm) by wet sieving. The long-term winter planted green manure significantly increased total C and N, and the formation of the 2-5-mm water-stable aggregate fraction. Compared with rice-rice-rape, rice-rice-Chinese milk vetch and rice-rice-ryegrass, the rice-rice-fallow significantly reduced 2-5-mm water-stable aggregates, with a significant redistribution of aggregates into micro-aggregates. Long-term winter planted green manure obviously improved C/N ratio and macro-aggregate-associated C and N. The highest contribution to soil fertility was from macro-aggregates of 2-5 mm in most cases.
基金Funded by the Major State Basic Research Development Program of China('973'Project,2001CB610705)
文摘Effects of calcined coal gangue (CG) aggregates treated by the surface thermal activation on the flowability and strength, and paste-CG aggregate interfaces of the cement-based material were investigated. The experimental results show that the compressive and flexural strength of the cement-based material with the calcined CG aggregates is much higher than that of the material with the natural CG aggregates, but the flowability of the material with calcined CG is significantly reduced with the calcined time. The strength of the material with the calcined CG aggregates only increases little with the calcined time at the same w/c ratio, but is reduced with the calcined time at the same flowability. The CG aggregates calcined by the surface thermal activation obviously overcomes the disadvantages of fully calcined CG.
基金financially supported by the Sichuan Province Science and Technology Support Program (No. 2014GZ0090)
文摘Aggregates of cerium dioxide nanoparticles(nano-CeO_2) were successfully prepared via a facile solvothermal process in this study. The crystallographic information and morphological information of nano-CeO_2 were systematically studied by X-ray diffraction(XRD),transmission electron microscopy(TEM), laser particle size analyzer(LA) and specific surface area and pore size analyzer during the solvothermal process. Among all the obtained samples, the 18-h solvothermal-prepared nano-CeO_2 aggregates show the best crystallinity and the largest specific surface area of 110.92 m^2·g^(-1). Owing to the high activity derived from the high specific surface area of the aggregates, the application as arsenic(As) adsorption was also studied. The adsorption efficiency of arsenic by nano-CeO_2 aggregates was established as the function of adsorbent dose, then pH value and at last adsorption time.The results indicate that the nano-CeO_2 aggregates show a high efficiency in removing arsenic from low As concentration solution, from which the nano-CeO_2 adsorbent could be easily separated. In addition, the adsorption kinetics is best fitted to pseudo-second-order model(R^2 = 0.99999).
基金the research fellowship granted by the Department of Biotechnology,Government of India,in the form of Overseas Associateship(No. BT/20/NE/2011/2014)
文摘Promoting soil carbon sequestration in agricultural land is one of the viable strategies to decelerate the observed climate changes. However, soil physical disturbances have aggravated the soil degradation process by accelerating erosion. Thus, reducing the magnitude and intensity of soil physical disturbance through appropriate farming/agricultural systems is essential to management of soil carbon sink capacity of agricultural lands. Four sites of different land use types/tillage practices, i) no-till (NT) corn (Zea mays L.) (NTC), ii) conventional till (CT) corn (CTC), iii) pastureland (PL), and iv) native forest (NF), were selected at the North Appalachian Experimental Watershed Station, Ohio, USA to assess the impact of NT farming on soil aggregate indices including water-stable aggregation, mean weight diameter (MWD) and geometric mean diameter (GMD), and soil organic carbon and total nitrogen contents. The NTC plots received cow manure additions (about 15 t ha-1) every other year. The CTC plots involved disking and chisel ploughing and liquid fertilizer application (110 L ha-l). The results showed that both water-stable aggregation and MWD were greater in soil for NTC than for CTC. In the 0-10 cm soil layer, the 〉 4.75-mm size fraction dominated NTC and was 46% more than that for CTC, whereas the 〈 0.25-mm size fraction was 380% more for CTC than for NTC. The values of both MWD and GMD in soil for NTC (2.17 mm and 1.19 mm, respectively) were higher than those for CTC (1.47 and 0.72 mm, respectively) in the 0-10 cm soil layer. Macroaggregates contained 6%-42% and 13%-43% higher organic carbon and total nitrogen contents, respectively, than microaggregates in soil for all sites. Macroaggregates in soil for NTC contained 40% more organic carbon and total nitrogen over microaggregates in soil for CTC. Therefore, a higher proportion of microaggregates with lower organic carbon contents created a carbon-depleted environment for CTC. In contrast, soil for NTC had more aggregation and contained higher organic carbon content within water-stable aggregates. The soil organic carbon and total nitrogen stocks (Mg ha-1) among the different sites followed the trend of NF 〉 PL 〉 NTC 〉 CTC, being 35%-46% more for NTC over CTC. The NT practice enhanced soil organic carbon content over the CT practice and thus was an important strategy of carbon sequestration in cropland soils.