期刊文献+
共找到284,288篇文章
< 1 2 250 >
每页显示 20 50 100
基于RANSAC与改进A^(*)算法的果园移动机器人路径规划研究
1
作者 王明之 吕强 +3 位作者 蒋杰 林刚 唐超 张皓杨 《西南大学学报(自然科学版)》 北大核心 2026年第1期216-228,共13页
针对果园移动机器人在全局路径规划中存在的搜索时间长、安全性低、冗余节点多、路径不平滑以及行间作业精度不高等问题,研究提出一种基于RANSAC(Random Sample Consensus)算法与改进A^(*)算法的路径规划方案。该方案首先利用RANSAC算... 针对果园移动机器人在全局路径规划中存在的搜索时间长、安全性低、冗余节点多、路径不平滑以及行间作业精度不高等问题,研究提出一种基于RANSAC(Random Sample Consensus)算法与改进A^(*)算法的路径规划方案。该方案首先利用RANSAC算法拟合树行直线并提取果树行间中线,为后续改进A^(*)算法提供最优中线参考路径;然后,在A^(*)算法中引入中线栅格缩减策略,引导A^(*)算法优先将中线作为最终路径;接着,对预估函数进行优化以提高运算效率,加入排斥力场函数以提升路径安全性;最后,结合安全距离阈值剔除冗余节点方法以消除多余节点,并采用三次均匀B样条曲线对路径进行平滑处理。在A^(*)算法仿真对比试验中,本文改进A^(*)算法相对于其他算法计算效率更高,生成路径更为安全平滑;在果园仿真栅格地图算法对比试验中,本文算法对于其他算法能规划出更高质量的行间中线路径;在模拟果园路径跟踪试验中,本文算法横向偏差均小于其他算法,适用性更强。 展开更多
关键词 移动机器人 路径规划 A^(*)算法 随机抽样一致算法 果园
原文传递
Path Planning for Thermal Power Plant Fan Inspection Robot Based on Improved A^(*)Algorithm 被引量:1
2
作者 Wei Zhang Tingfeng Zhang 《Journal of Electronic Research and Application》 2025年第1期233-239,共7页
To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The... To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks. 展开更多
关键词 Power plant fans Inspection robot Path planning Improved A^(*)algorithm
在线阅读 下载PDF
Fusion Algorithm Based on Improved A^(*)and DWA for USV Path Planning
3
作者 Changyi Li Lei Yao Chao Mi 《哈尔滨工程大学学报(英文版)》 2025年第1期224-237,共14页
The traditional A^(*)algorithm exhibits a low efficiency in the path planning of unmanned surface vehicles(USVs).In addition,the path planned presents numerous redundant inflection waypoints,and the security is low,wh... The traditional A^(*)algorithm exhibits a low efficiency in the path planning of unmanned surface vehicles(USVs).In addition,the path planned presents numerous redundant inflection waypoints,and the security is low,which is not conducive to the control of USV and also affects navigation safety.In this paper,these problems were addressed through the following improvements.First,the path search angle and security were comprehensively considered,and a security expansion strategy of nodes based on the 5×5 neighborhood was proposed.The A^(*)algorithm search neighborhood was expanded from 3×3 to 5×5,and safe nodes were screened out for extension via the node security expansion strategy.This algorithm can also optimize path search angles while improving path security.Second,the distance from the current node to the target node was introduced into the heuristic function.The efficiency of the A^(*)algorithm was improved,and the path was smoothed using the Floyd algorithm.For the dynamic adjustment of the weight to improve the efficiency of DWA,the distance from the USV to the target point was introduced into the evaluation function of the dynamic-window approach(DWA)algorithm.Finally,combined with the local target point selection strategy,the optimized DWA algorithm was performed for local path planning.The experimental results show the smooth and safe path planned by the fusion algorithm,which can successfully avoid dynamic obstacles and is effective and feasible in path planning for USVs. 展开更多
关键词 Improved A^(*)algorithm Optimized DWA algorithm Unmanned surface vehicles Path planning Fusion algorithm
在线阅读 下载PDF
Ship Path Planning Based on Sparse A^(*)Algorithm
4
作者 Yongjian Zhai Jianhui Cui +3 位作者 Fanbin Meng Huawei Xie Chunyan Hou Bin Li 《哈尔滨工程大学学报(英文版)》 2025年第1期238-248,共11页
An improved version of the sparse A^(*)algorithm is proposed to address the common issue of excessive expansion of nodes and failure to consider current ship status and parameters in traditional path planning algorith... An improved version of the sparse A^(*)algorithm is proposed to address the common issue of excessive expansion of nodes and failure to consider current ship status and parameters in traditional path planning algorithms.This algorithm considers factors such as initial position and orientation of the ship,safety range,and ship draft to determine the optimal obstacle-avoiding route from the current to the destination point for ship planning.A coordinate transformation algorithm is also applied to convert commonly used latitude and longitude coordinates of ship travel paths to easily utilized and analyzed Cartesian coordinates.The algorithm incorporates a hierarchical chart processing algorithm to handle multilayered chart data.Furthermore,the algorithm considers the impact of ship length on grid size and density when implementing chart gridification,adjusting the grid size and density accordingly based on ship length.Simulation results show that compared to traditional path planning algorithms,the sparse A^(*)algorithm reduces the average number of path points by 25%,decreases the average maximum storage node number by 17%,and raises the average path turning angle by approximately 10°,effectively improving the safety of ship planning paths. 展开更多
关键词 Sparse A^(*)algorithm Path planning RASTERIZATION Coordinate transformation Image preprocessing
在线阅读 下载PDF
融合改进A^(*)与DWA算法的机器人路径规划
5
作者 谢德瀚 高金凤 +3 位作者 贾国强 李乐宝 苏雯 梅从立 《电子科技》 2026年第1期64-72,96,共10页
针对传统A^(*)算法拓展节点冗余、路径贴近障碍物以及传统DWA(Dynamic Window Approaches)算法轨迹振荡、易陷入局部极小值等问题,文中提出了一种融合改进A^(*)与DWA算法的机器人路径规划方法。改进传统A^(*)算法代价函数去除了冗余拓... 针对传统A^(*)算法拓展节点冗余、路径贴近障碍物以及传统DWA(Dynamic Window Approaches)算法轨迹振荡、易陷入局部极小值等问题,文中提出了一种融合改进A^(*)与DWA算法的机器人路径规划方法。改进传统A^(*)算法代价函数去除了冗余拓展节点,改进子节点选取策略避免了路径贴近障碍物,并通过双向平滑度优化去除不必要转折点。在DWA算法评价函数中引入自适应距离因子以减少轨迹的振荡,将A^(*)先验路径离散节点作为DWA算法的局部目标点进行算法融合。仿真实验表明,改进A^(*)算法拓展节点减少了118个,规划时间减少了29.9%,改进DWA算法规划速度提高了5.3%。所提融合算法能够在保障路径全局最优的同时避免陷入局部极小值,实现了对未知障碍物的实时避障。 展开更多
关键词 机器人 路径规划 A^(*)算法 DWA算法 启发函数 子节点选取 双向平滑度优化 距离因子
在线阅读 下载PDF
PID Steering Control Method of Agricultural Robot Based on Fusion of Particle Swarm Optimization and Genetic Algorithm
6
作者 ZHAO Longlian ZHANG Jiachuang +2 位作者 LI Mei DONG Zhicheng LI Junhui 《农业机械学报》 北大核心 2026年第1期358-367,共10页
Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion... Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots. 展开更多
关键词 agricultural robot steering PID control particle swarm optimization algorithm genetic algorithm
在线阅读 下载PDF
融合A^(*)-APF的领航跟随法火灾疏散路径规划
7
作者 于开旺 祁云 +1 位作者 崔欣超 肖新帅 《沈阳理工大学学报》 2026年第1期51-56,71,共7页
为解决常规火灾疏散路径规划算法在局部复杂环境下易陷入“假死”状态的问题,同时获得更优的疏散路径,提出一种融合A^(*)算法和人工势场法(APF)的领航跟随算法。改进A^(*)算法的OPEN列表存储结构,并采用八方向搜索策略,以去除冗余节点... 为解决常规火灾疏散路径规划算法在局部复杂环境下易陷入“假死”状态的问题,同时获得更优的疏散路径,提出一种融合A^(*)算法和人工势场法(APF)的领航跟随算法。改进A^(*)算法的OPEN列表存储结构,并采用八方向搜索策略,以去除冗余节点、缩短路径长度并避开障碍物;改进APF算法中的引力与斥力势场函数,以提高其在局部环境的寻优能力,避免陷入局部最优解,进一步优化路径并提升避障性能。仿真实验结果表明,采用本文算法规划的路径较短且平滑,分散个体首先向领航者靠拢,然后与领航者保持规范队列前进,整体编队有效避开了障碍物节点并到达终点,实现了受困人员按照最优的疏散路径避障逃离。 展开更多
关键词 火灾疏散 路径规划 领航跟随法 A^(*)算法 人工势场算法
在线阅读 下载PDF
基于改进A^(*)算法的机器人路径规划算法
8
作者 郑卫卫 《镇江高专学报》 2026年第1期94-99,共6页
针对传统A^(*)路径规划算法存在扩展节点多、搜索速度慢、路线拐点多且不平滑等问题,提出一种改进A^(*)的机器人路径规划算法。首先,利用障碍物率、路径距离优化启发式函数及搜索领域,减少扩展节点以提高搜索速度。其次,引用碰撞检测修... 针对传统A^(*)路径规划算法存在扩展节点多、搜索速度慢、路线拐点多且不平滑等问题,提出一种改进A^(*)的机器人路径规划算法。首先,利用障碍物率、路径距离优化启发式函数及搜索领域,减少扩展节点以提高搜索速度。其次,引用碰撞检测修剪路径枝节,有效减少路线拐点。最后,引入贝塞尔曲线处理,提高路径的平滑度。Pycharm仿真结果表明,在70×70栅格地图下,相较于传统A^(*)算法、双向搜索A^(*)算法,优化后的A^(*)算法在规划的搜索时间、扩展节点、路径长度、路径拐点等方面分别减少63.16%、-42.86%,173.57%、12.14%,7.34%、35.50%,166.67%、566.67%。 展开更多
关键词 A^(*)算法 路径规划 贝塞尔曲线 移动机器人
在线阅读 下载PDF
基于改进混合A^(*)算法的无人船路径规划
9
作者 安焱恒 孙晓界 +3 位作者 唐治齐 徐林 张皓翔 慕东东 《沈阳理工大学学报》 2026年第1期31-35,43,共6页
针对传统A^(*)算法在无人船路径规划中存在转折点过多、路径平滑度不足以及规划效率低下等问题,提出一种改进的混合A^(*)算法。在搜索过程中交替运用四邻域和八邻域策略,有效减少路径中的转折点数量,增强路径探索的灵活性与全面性,突破... 针对传统A^(*)算法在无人船路径规划中存在转折点过多、路径平滑度不足以及规划效率低下等问题,提出一种改进的混合A^(*)算法。在搜索过程中交替运用四邻域和八邻域策略,有效减少路径中的转折点数量,增强路径探索的灵活性与全面性,突破单一邻域搜索的局限性;优化A^(*)算法的估价函数,将启发式搜索与路径优化策略相结合,提升路径规划的效率和适应性。实验结果表明,与传统A^(*)算法相比,改进后的混合A^(*)算法充分考虑了无人船的运动约束,在路径长度和探索节点数等方面均展现出优势,生成的路径更加平滑,对复杂环境的适应性更强。 展开更多
关键词 无人船 路径规划 混合A^(*)算法 四八邻域 交替搜索
在线阅读 下载PDF
Flood predictions from metrics to classes by multiple machine learning algorithms coupling with clustering-deduced membership degree
10
作者 ZHAI Xiaoyan ZHANG Yongyong +5 位作者 XIA Jun ZHANG Yongqiang TANG Qiuhong SHAO Quanxi CHEN Junxu ZHANG Fan 《Journal of Geographical Sciences》 2026年第1期149-176,共28页
Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting... Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting flood resource variables using single or hybrid machine learning techniques.However,class-based flood predictions have rarely been investigated,which can aid in quickly diagnosing comprehensive flood characteristics and proposing targeted management strategies.This study proposed a prediction approach of flood regime metrics and event classes coupling machine learning algorithms with clustering-deduced membership degrees.Five algorithms were adopted for this exploration.Results showed that the class membership degrees accurately determined event classes with class hit rates up to 100%,compared with the four classes clustered from nine regime metrics.The nonlinear algorithms(Multiple Linear Regression,Random Forest,and least squares-Support Vector Machine)outperformed the linear techniques(Multiple Linear Regression and Stepwise Regression)in predicting flood regime metrics.The proposed approach well predicted flood event classes with average class hit rates of 66.0%-85.4%and 47.2%-76.0%in calibration and validation periods,respectively,particularly for the slow and late flood events.The predictive capability of the proposed prediction approach for flood regime metrics and classes was considerably stronger than that of hydrological modeling approach. 展开更多
关键词 flood regime metrics class prediction machine learning algorithms hydrological model
原文传递
Equivalent Modeling with Passive Filter Parameter Clustering for Photovoltaic Power Stations Based on a Particle Swarm Optimization K-Means Algorithm
11
作者 Binjiang Hu Yihua Zhu +3 位作者 Liang Tu Zun Ma Xian Meng Kewei Xu 《Energy Engineering》 2026年第1期431-459,共29页
This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the compl... This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the complexities,simulation time cost and convergence problems of detailed PV power station models.First,the amplitude–frequency curves of different filter parameters are analyzed.Based on the results,a grouping parameter set for characterizing the external filter characteristics is established.These parameters are further defined as clustering parameters.A single PV inverter model is then established as a prerequisite foundation.The proposed equivalent method combines the global search capability of PSO with the rapid convergence of KMC,effectively overcoming the tendency of KMC to become trapped in local optima.This approach enhances both clustering accuracy and numerical stability when determining equivalence for PV inverter units.Using the proposed clustering method,both a detailed PV power station model and an equivalent model are developed and compared.Simulation and hardwarein-loop(HIL)results based on the equivalent model verify that the equivalent method accurately represents the dynamic characteristics of PVpower stations and adapts well to different operating conditions.The proposed equivalent modeling method provides an effective analysis tool for future renewable energy integration research. 展开更多
关键词 Photovoltaic power station multi-machine equivalentmodeling particle swarmoptimization K-means clustering algorithm
在线阅读 下载PDF
GSLDWOA: A Feature Selection Algorithm for Intrusion Detection Systems in IIoT
12
作者 Wanwei Huang Huicong Yu +3 位作者 Jiawei Ren Kun Wang Yanbu Guo Lifeng Jin 《Computers, Materials & Continua》 2026年第1期2006-2029,共24页
Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from... Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%. 展开更多
关键词 Industrial Internet of Things intrusion detection system feature selection whale optimization algorithm Gaussian mutation
在线阅读 下载PDF
Identification of small impact craters in Chang’e-4 landing areas using a new multi-scale fusion crater detection algorithm
13
作者 FangChao Liu HuiWen Liu +7 位作者 Li Zhang Jian Chen DiJun Guo Bo Li ChangQing Liu ZongCheng Ling Ying-Bo Lu JunSheng Yao 《Earth and Planetary Physics》 2026年第1期92-104,共13页
Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious an... Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy. 展开更多
关键词 impact craters Chang’e-4 landing area multi-scale automatic detection YOLO11 Fusion algorithm
在线阅读 下载PDF
基于改进A^(*)算法的水空两栖机器人多目标路径规划 被引量:7
14
作者 沈跃 孙浩 +2 位作者 沈亚运 郭奕 刘慧 《农业工程学报》 北大核心 2025年第6期62-70,共9页
实现水空两栖机器人安全、高效进行多目标点跨塘水质检测作业,减少传统水质检测模式时间及经济成本,合理的路径规划十分重要。针对传统A^(*)算法路径曲折、搜索效率低、无法考虑多栖机器人约束特性等问题,该研究提出一种改进A^(*)的水... 实现水空两栖机器人安全、高效进行多目标点跨塘水质检测作业,减少传统水质检测模式时间及经济成本,合理的路径规划十分重要。针对传统A^(*)算法路径曲折、搜索效率低、无法考虑多栖机器人约束特性等问题,该研究提出一种改进A^(*)的水空两栖机器人路径规划算法。首先采集障碍物分布情况和高度信息,建立多水域2.5维栅格地图;其次在A^(*)算法评价函数中加入能耗、时间及安全代价,通过调节不同权重获取相应初始路径;然后通过动态分配权重改进启发式函数,加快搜索效率,并利用目标成本函数对所有目标进行优先级判定,实现多目标路径规划;最后通过增加空中模态切换点、删除冗余点及采用B样条曲线优化路径,生成可连接多水域多水质检测点的三维平滑轨迹。仿真试验结果表明:与传统A^(*)算法和陆空A^(*)算法相比,改进A^(*)算法迭代次数分别减少70.04%与68.07%,路径长度分别减少35.44%与7.6%,总转角分别减小83.63%与8.65%,危险节点数分别减少80.67%与33.33%。真实水域试验表明:改进A^(*)算法的迭代次数比传统A^(*)算法和陆空A^(*)算法减少84.89%与83.78%,路径长度分别减少12%与0.6%,总转角分别减小73.21%与22.1%,危险节点数分别减少84.62%与80%,可规划出通过多个目标点的安全、平滑路径,有效提高水质检测效率,为多栖机器人自主导航提供参考。 展开更多
关键词 多目标 路径规划 水空两栖机器人 A^(*)算法 轨迹优化
在线阅读 下载PDF
改进邻域扩展A^(*)算法的移动机器人路径规划 被引量:4
15
作者 董雅文 杨静雯 +1 位作者 张宝锋 赵小惠 《机械设计与制造》 北大核心 2025年第1期291-295,共5页
为解决A^(*)算法在规划路径时存在转折角度过大、路径不平滑的问题,提出改进邻域扩展A^(*)算法。首先,对A^(*)算法搜索范围扩展至24邻域,然后对邻域进行二次数量优化处理得到最终邻域搜索节点。其次,设计具有双层位置导向信息的评价函数... 为解决A^(*)算法在规划路径时存在转折角度过大、路径不平滑的问题,提出改进邻域扩展A^(*)算法。首先,对A^(*)算法搜索范围扩展至24邻域,然后对邻域进行二次数量优化处理得到最终邻域搜索节点。其次,设计具有双层位置导向信息的评价函数,最后对所得路径进行二次平滑处理以剔除冗余节点并削弱路径尖峰的剧烈程度。仿真结果表明,改进邻域扩展A^(*)算法在路径长度、搜索节点数量、规划时间上均优于传统A^(*)算法,且路径无尖峰转角,整体趋势平缓。 展开更多
关键词 点对点路径规划 A^(*)算法 邻域扩展
在线阅读 下载PDF
基于混合A^(*)和DP-RS曲线的半挂车辆倒车路径规划
16
作者 尉金强 唐圣金 +1 位作者 杜文正 邓刚锋 《现代电子技术》 北大核心 2026年第3期128-136,共9页
针对半挂车辆倒车路径规划中实时性和路径合理性不足的问题,文中提出一种基于混合A^(*)算法和DP-RS曲线的半挂车辆倒车路径规划方法。首先,通过构建描述半挂车运动特性的运动学模型,确保车辆倒车路径规划充分考虑车辆的物理约束;然后,... 针对半挂车辆倒车路径规划中实时性和路径合理性不足的问题,文中提出一种基于混合A^(*)算法和DP-RS曲线的半挂车辆倒车路径规划方法。首先,通过构建描述半挂车运动特性的运动学模型,确保车辆倒车路径规划充分考虑车辆的物理约束;然后,结合混合A^(*)算法和碰撞检测技术进行半挂车辆全局倒车路径搜索,生成初步路径;接着,采用DP-RS曲线对初步倒车路径进行优化和平滑处理,以提升路径规划的精度和适应性;最后,通过仿真实验验证方法的可行性。实验结果表明,优化后的路径提高了车辆倒车效率,在相同场景下,所提方法使路径规划时间减少了64.8%,并在提升路径规划实时性和计算效率的同时,增强了半挂车倒车路径的合理性与安全性。 展开更多
关键词 半挂车辆 车辆倒车 路径规划 DP-RS曲线 混合A~^(*)算法 运动学模型 碰撞检测
在线阅读 下载PDF
基于改进A^(*)平滑性路径规划算法研究 被引量:4
17
作者 王云亮 张赛 吴艳娟 《计算机应用与软件》 北大核心 2025年第1期258-263,276,共7页
为了解决传统A^(*)算法执行效率不高,转折点过多等问题,提出一种基于优化关键点选取和平滑路径的改进A^(*)算法。首先运用一种改进跳点搜索算法对A^(*)算法加快跳点搜索速度并对扩展子节点进行遴选,引入RRT*中剪枝思想在二次路径规划时... 为了解决传统A^(*)算法执行效率不高,转折点过多等问题,提出一种基于优化关键点选取和平滑路径的改进A^(*)算法。首先运用一种改进跳点搜索算法对A^(*)算法加快跳点搜索速度并对扩展子节点进行遴选,引入RRT*中剪枝思想在二次路径规划时剔除非必要的节点。最后将A^(*)算法结合Bezier曲线对生成路径进行平滑性处理。为测试改进A^(*)算法的可行性与有效性,在多种不同尺寸规格的栅格地图中和移动机器人平台上进行对比仿真实验。结果表明,改进后A^(*)算法相比于原A^(*)算法生成扩展节点数量更少、寻路时间缩短、执行效率更高,改进后A^(*)算法路径规划性能得到明显提升。 展开更多
关键词 移动机器人 A^(*)算法 贝塞尔曲线 路径规划
在线阅读 下载PDF
改进A^(*)算法融合DWA机器人路径规划研究 被引量:7
18
作者 曾宪阳 张加旺 《电子测量技术》 北大核心 2025年第6期20-27,共8页
在物流机器人运输流程中,路径规划是核心环节,面临路径不够平滑及算法搜索效率低下的挑战。A^(*)算法作为广泛应用的全局路径规划方法,在应用于物流机器人时存在无法有效实现路径平滑等问题。为此,对传统A^(*)算法进行了改进,通过动态... 在物流机器人运输流程中,路径规划是核心环节,面临路径不够平滑及算法搜索效率低下的挑战。A^(*)算法作为广泛应用的全局路径规划方法,在应用于物流机器人时存在无法有效实现路径平滑等问题。为此,对传统A^(*)算法进行了改进,通过动态加权处理启发函数,并利用Floyd算法去除路径中的冗余点,同时引入安全距离机制以防碰撞。此外,还对路径进行了平滑优化,以更好地适应物流机器人的实际移动需求。MATLAB仿真结果显示,改进后的A^(*)算法相比传统算法在转折点数量上平均减少了58.5%,路径长度缩短了3.19%,遍历点数降低了59.9%。进一步结合DWA算法进行局部路径规划,实现了避障功能。通过仿真和实车实验验证了该融合算法的有效性。 展开更多
关键词 A^(*)算法 路径规划 DWA算法 物流机器人 MATLAB仿真
原文传递
A^(*)与NSGA-II融合的船舶气象航线多目标规划方法 被引量:1
19
作者 李元奎 索基源 +3 位作者 于东冶 张新宇 杨放 杨雪锋 《中国舰船研究》 北大核心 2025年第3期288-295,共8页
[目的]面向我国智能航运和气象导航国产化的发展要求,提出一种基于A^(*)与非支配排序遗传算法(NSGA-II)融合的船舶多目标航线规划方法,以适应复杂多样的远洋航行任务。[方法]通过将A^(*)算法引入至NSGA-II中引导搜索方向加快算法收敛速... [目的]面向我国智能航运和气象导航国产化的发展要求,提出一种基于A^(*)与非支配排序遗传算法(NSGA-II)融合的船舶多目标航线规划方法,以适应复杂多样的远洋航行任务。[方法]通过将A^(*)算法引入至NSGA-II中引导搜索方向加快算法收敛速度,然后通过构建环境数据模型和目标函数,采用跨太平洋航线对模型和算法进行仿真验证。[结果]仿真结果表明:设计的模型和算法可求解得到分布均匀、多样化的Pareto最优航线解集,所有航线均可以顺利躲避大风浪区域,且可根据决策者需求选择船舶最适航线。[结论]所提方法可用于多约束条件下的船舶远洋航线优化,求解符合航次目标的航线,从而降低营运成本、提高航运效率,对船舶气象导航和未来船舶智能航行具有一定的支撑作用。 展开更多
关键词 气象航线 多目标优化 A^(*)算法 NSGA-II 智能航行 遗传算法
在线阅读 下载PDF
基于改进A^(*)算法的矿用巡检机器人路径规划 被引量:1
20
作者 张辉 苏国用 +2 位作者 赵东洋 杨宇豪 何凯 《太原理工大学学报》 北大核心 2025年第3期559-566,共8页
【目的】针对煤矿井下环境非结构化、局部可通行区域窄以及传统A^(*)算法规划路径存在搜索时间长、搜索节点多、路径冗余节点多、路径平滑度较差等问题,提出一种基于改进A^(*)算法的矿用巡检机器人路径规划算法。【方法】首先在传统A^(*... 【目的】针对煤矿井下环境非结构化、局部可通行区域窄以及传统A^(*)算法规划路径存在搜索时间长、搜索节点多、路径冗余节点多、路径平滑度较差等问题,提出一种基于改进A^(*)算法的矿用巡检机器人路径规划算法。【方法】首先在传统A^(*)算法的启发函数中引入预估消耗的指数函数和障碍物覆盖率之和,以提高搜索效率,缩短搜索时间;其次改进传统8邻域搜索为9邻域搜索,从而避免无用搜索,减少搜索节点数量;然后通过Floyd算法剔除路径中的冗余节点;最后采用改进3阶贝塞尔曲线完成路径平滑任务。【结果】结果表明:相较于传统A^(*)算法,在特定的20×20、30×30和40×40栅格地图下,改进A^(*)算法使得搜索时间分别缩短44.1%、63.8%和84.8%,搜索节点分别减少31.6%、47.9%和71%;路径平滑算法能够减少路径节点,改善路径平滑度,更适用于矿用巡检机器人的路径规划。 展开更多
关键词 矿用巡检机器人 路径规划 改进A^(*)算法 FLOYD算法 贝塞尔曲线
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部