A flexible air electrode with excellent activity and stability is essential for flexible zinc-air batteries.In this study,we report the rational design of nitrogen-doped carbon nanotube-encapsulated Co9S8 nanopar-ticl...A flexible air electrode with excellent activity and stability is essential for flexible zinc-air batteries.In this study,we report the rational design of nitrogen-doped carbon nanotube-encapsulated Co9S8 nanopar-ticles on carbon cloth(Co9S8/NCNTs/CC),serving as self-supporting air electrodes for both liquid-state and flexible zinc-air batteries.The Co9S8/NCNTs/CC-1 exhibited a half-wave potential of 0.86 V for oxygen re-duction reaction(ORR)and achieved a current density of 10 mA cm-2 for oxygen evolution reaction(OER)at a voltage of only 1.52 V.The well-constructed nanotube on carbon cloth facilitates mass diffu-sion and electron transfer,while enhancing the mechanical flexibility of the material.Density functional theory(DFT)calculations suggested that the synergistic interaction between Co9S8 and NCNTs effectively enhanced the bifunctional electrocatalytic performance of the material.Liquid-state and flexible zinc-air batteries assembled with Co9S8/NCNTs/CC-1 demonstrated outstanding charge-discharge capabilities and long-term stability.展开更多
基金supported by the Natural Sci-ence Foundation of Xinjiang Uygur Autonomous Region(Nos.2022D01E36 and 2022D01E38)the National Natural Science Foun-dation of China(Nos.22369016 and 22065034)the Outstand-ing Doctoral Student Innovation Project of Xinjiang University(No.XJU2024BS055).
文摘A flexible air electrode with excellent activity and stability is essential for flexible zinc-air batteries.In this study,we report the rational design of nitrogen-doped carbon nanotube-encapsulated Co9S8 nanopar-ticles on carbon cloth(Co9S8/NCNTs/CC),serving as self-supporting air electrodes for both liquid-state and flexible zinc-air batteries.The Co9S8/NCNTs/CC-1 exhibited a half-wave potential of 0.86 V for oxygen re-duction reaction(ORR)and achieved a current density of 10 mA cm-2 for oxygen evolution reaction(OER)at a voltage of only 1.52 V.The well-constructed nanotube on carbon cloth facilitates mass diffu-sion and electron transfer,while enhancing the mechanical flexibility of the material.Density functional theory(DFT)calculations suggested that the synergistic interaction between Co9S8 and NCNTs effectively enhanced the bifunctional electrocatalytic performance of the material.Liquid-state and flexible zinc-air batteries assembled with Co9S8/NCNTs/CC-1 demonstrated outstanding charge-discharge capabilities and long-term stability.