Background:This study focused on developing and optimizing a self-microemulsifying drug delivery system(SMEDDS)to improve Lafutidine’s solubility and bioavailability,thereby enhancing its effectiveness in treating ga...Background:This study focused on developing and optimizing a self-microemulsifying drug delivery system(SMEDDS)to improve Lafutidine’s solubility and bioavailability,thereby enhancing its effectiveness in treating gastric ulcers.Traditional formulations are less effective due to their limited water solubility and bioavailability.Methods:The study used solubility tests,pseudo-ternary phase diagrams,and central composite design(CCD)to optimize.The formulation was optimized by varying the oil concentration(10–40%)and surfactant/cosurfactant ratio(0.33–3.00),and then tested for droplet size,drug content,emulsification,phase stability,and in vitro dissolution.Results:The study found that the optimized formulation contained 14%Capmul PG 8NF oil,62%Labrasol surfactant,and 24%Tween 80 cosurfactant.This combination generated an average droplet size of 111.02 nm and improved drug release properties.Furthermore,the formulation was stable without phase separation,with a drug content of 88.2–99.8%.Conclusion:SMEDDS significantly improves lafutidine delivery by increasing solubility and absorption,thereby overcoming oral administration challenges.The system quickly formed small droplets in water and released the drug in 15 min.Enhancing lafutidine’s bioavailability may improve its efficacy in treating gastric ulcers,resulting in better patient outcomes and potentially lower dosing frequency.展开更多
In this paper,Co9S8/Ni3S2 nanoflakes(NFs)with sulfur deficiencies were grown in-situ on N-doped graphene nanotubes(NGNTs).They were successfully prepared through electrodeposition followed by hydrogenation treatment,w...In this paper,Co9S8/Ni3S2 nanoflakes(NFs)with sulfur deficiencies were grown in-situ on N-doped graphene nanotubes(NGNTs).They were successfully prepared through electrodeposition followed by hydrogenation treatment,which is able to act as a self-supported electrode for asymmetric supercapacitors(ASCs).Combining the defect-rich active materials with highly conductive skeletons,the hybrid electrode N-GNTs@sd-Co9S8/Ni3S2NFs show ultrahigh specific capacity of^304 mA hg^-1 and prominent rate capability(capacity retention ratio of^85%even at 100 Ag^-1),and deliver a long cycling lifespan of^1.9%capacitance loss after 10000 cycles.In addition,an ASC was constructed using the as-synthesized composite electrode as the positive electrode and active carbon(AC)as the negative electrode.The fabricated device shows a high energy density of^45.1 Wh kg^-1 at^3.4 kW kg^-1 and superior cycling stability.This work substantiates a smart strategy to fabricate novel composite electrode materials for next-generation supercapacitors by incorporating riched deficiencies into nanostructures.展开更多
文摘Background:This study focused on developing and optimizing a self-microemulsifying drug delivery system(SMEDDS)to improve Lafutidine’s solubility and bioavailability,thereby enhancing its effectiveness in treating gastric ulcers.Traditional formulations are less effective due to their limited water solubility and bioavailability.Methods:The study used solubility tests,pseudo-ternary phase diagrams,and central composite design(CCD)to optimize.The formulation was optimized by varying the oil concentration(10–40%)and surfactant/cosurfactant ratio(0.33–3.00),and then tested for droplet size,drug content,emulsification,phase stability,and in vitro dissolution.Results:The study found that the optimized formulation contained 14%Capmul PG 8NF oil,62%Labrasol surfactant,and 24%Tween 80 cosurfactant.This combination generated an average droplet size of 111.02 nm and improved drug release properties.Furthermore,the formulation was stable without phase separation,with a drug content of 88.2–99.8%.Conclusion:SMEDDS significantly improves lafutidine delivery by increasing solubility and absorption,thereby overcoming oral administration challenges.The system quickly formed small droplets in water and released the drug in 15 min.Enhancing lafutidine’s bioavailability may improve its efficacy in treating gastric ulcers,resulting in better patient outcomes and potentially lower dosing frequency.
基金supported by the National Natural Science Foundation of China(Grant Nos.51672144,51572137,51702181)the Key Research and Development Program of Shandong Province(Grant No.2019GGX102055)+3 种基金the Natural Science Foundation of Shandong Province(Grant Nos.ZR2017BB013,ZR2019BEM042)the Higher Educational Science and Technology Program of Shandong Province(Grant Nos.J17KA014,J18KA001,J18KA033)the Taishan Scholars Program of Shandong Province(Grant No.201511034)the Overseas Taishan Scholars Program。
文摘In this paper,Co9S8/Ni3S2 nanoflakes(NFs)with sulfur deficiencies were grown in-situ on N-doped graphene nanotubes(NGNTs).They were successfully prepared through electrodeposition followed by hydrogenation treatment,which is able to act as a self-supported electrode for asymmetric supercapacitors(ASCs).Combining the defect-rich active materials with highly conductive skeletons,the hybrid electrode N-GNTs@sd-Co9S8/Ni3S2NFs show ultrahigh specific capacity of^304 mA hg^-1 and prominent rate capability(capacity retention ratio of^85%even at 100 Ag^-1),and deliver a long cycling lifespan of^1.9%capacitance loss after 10000 cycles.In addition,an ASC was constructed using the as-synthesized composite electrode as the positive electrode and active carbon(AC)as the negative electrode.The fabricated device shows a high energy density of^45.1 Wh kg^-1 at^3.4 kW kg^-1 and superior cycling stability.This work substantiates a smart strategy to fabricate novel composite electrode materials for next-generation supercapacitors by incorporating riched deficiencies into nanostructures.