This study deals with the development of a 780-MPa-class hot-rolled advanced high-strength steel(AHSS)with an ultrahigh elongation at break of approximately 30%and strength-ductility product exceeding 24 GPa·%,in...This study deals with the development of a 780-MPa-class hot-rolled advanced high-strength steel(AHSS)with an ultrahigh elongation at break of approximately 30%and strength-ductility product exceeding 24 GPa·%,indicating the excellent formability of the newly developed AHSS.The microstructure of the newly developed 780-MPa-class AHSS consists mainly of the triplex phase of ferrite,bainite,and retained austenite with a volume fraction of 10%±2%.The stability of the retained austenite in the newly developed AHSS is much higher than that of conventional transformation-induced plasticity steels,in which the retained austenite is prone to transformation into martensite under deformation.At a pre-strain lower than 1.2%,the volume fraction of the retained austenite and the elongation at break of the present 780-MPa-class AHSS remain almost unchanged,showing a high tolerance in the process window during leveling or straightening.Therefore,the present 780-MPa-class AHSS is particularly suitable for the production of components with complex shapes.展开更多
The hydrophobic sonosensitizer IR780 iodide(IR780)was loaded into liposomes to form Liposome@IR780 nanoparticles(NPs)for triple-negative breast cancer(TNBC)to enhance SDT via low-intensity ultrasound(LIU)irradiation.T...The hydrophobic sonosensitizer IR780 iodide(IR780)was loaded into liposomes to form Liposome@IR780 nanoparticles(NPs)for triple-negative breast cancer(TNBC)to enhance SDT via low-intensity ultrasound(LIU)irradiation.The NPs were characterized using various physicochemical methods including size distribution,zeta potential,and morphology.In vitro experiments show that the Liposome@IR780 NPs can generate more reactive oxygen species(ROS)upon LIU irradiation.The apoptosis experiment results further demonstrate that Liposome@IR780 NPs show better apoptosis rate against 4T1 cells.Our results indicate that Liposome@IR780 NPs will provide a promising approach for TNBC upon SDT treatment.展开更多
文摘This study deals with the development of a 780-MPa-class hot-rolled advanced high-strength steel(AHSS)with an ultrahigh elongation at break of approximately 30%and strength-ductility product exceeding 24 GPa·%,indicating the excellent formability of the newly developed AHSS.The microstructure of the newly developed 780-MPa-class AHSS consists mainly of the triplex phase of ferrite,bainite,and retained austenite with a volume fraction of 10%±2%.The stability of the retained austenite in the newly developed AHSS is much higher than that of conventional transformation-induced plasticity steels,in which the retained austenite is prone to transformation into martensite under deformation.At a pre-strain lower than 1.2%,the volume fraction of the retained austenite and the elongation at break of the present 780-MPa-class AHSS remain almost unchanged,showing a high tolerance in the process window during leveling or straightening.Therefore,the present 780-MPa-class AHSS is particularly suitable for the production of components with complex shapes.
文摘The hydrophobic sonosensitizer IR780 iodide(IR780)was loaded into liposomes to form Liposome@IR780 nanoparticles(NPs)for triple-negative breast cancer(TNBC)to enhance SDT via low-intensity ultrasound(LIU)irradiation.The NPs were characterized using various physicochemical methods including size distribution,zeta potential,and morphology.In vitro experiments show that the Liposome@IR780 NPs can generate more reactive oxygen species(ROS)upon LIU irradiation.The apoptosis experiment results further demonstrate that Liposome@IR780 NPs show better apoptosis rate against 4T1 cells.Our results indicate that Liposome@IR780 NPs will provide a promising approach for TNBC upon SDT treatment.