For earthquakes (M≥4.0) occurring along and around the East Anatolian fault zone and the Dead Sea fault zone within ten years immediately before the MW7.8 Gaziantep earthquake,Türkiye,of February 6,2023,we explo...For earthquakes (M≥4.0) occurring along and around the East Anatolian fault zone and the Dead Sea fault zone within ten years immediately before the MW7.8 Gaziantep earthquake,Türkiye,of February 6,2023,we explored the correlation between seismicity and the earth's rotation.We statistically evaluated the correlation using the Schuster's test.The results are quantitatively assessed by a p-value.We found a clear downward trend in the p-values from early 2020 to late 2022 in the studied region.We also obtained a spatial distribution of the p-values showing a low p-value area near the northeastern end of the aftershock zone.Although the stress induced by the rotation of the earth is very weak,it could control the earthquake occurrence when the focal medium is loaded to the critical state to release a large earthquake.The decrease in the b-value in the Gutenberg-Richter (G-R) relation is considered in the form of the tectonic stress increase in the crust.We investigated the b-value as a function of time in the study region.We found that the b-value had decreased for about eleven years before the p-value started to decrease,with a relative reduction of 57%.Therefore,the result of the lower p-values obtained in the present study infers that the earthquakes were dominated by the earth's rotation prior to the MW7.8 Türkiye earthquake due to a critical state of the focal region.展开更多
Both M_(W) 7.8 and M_(W) 7.5 earthquakes occurred in southeastern Türkiye on February 6,2023,resulting in numerous buildings collapsing and serious casualties.Understanding the distribution of coseismic surface r...Both M_(W) 7.8 and M_(W) 7.5 earthquakes occurred in southeastern Türkiye on February 6,2023,resulting in numerous buildings collapsing and serious casualties.Understanding the distribution of coseismic surface ruptures and secondary disasters surrounding the epicentral area is important for post-earthquake emergency and disaster assessments.High-resolution Maxar and GF-2 satellite data were used after the events to extract the location of the rupture surrounding the first epicentral area.The results show that the length of the interpreted surface rupture zone(part of)is approximately 75 km,with a coseismic sinistral dislocation of 2-3 m near the epicenter;however,this reduced to zero at the tip of the southwest section of the East Anatolia Fault Zone.Moreover,dense soil liquefaction pits were triggered along the rupture trace.These events are in the western region of the Eurasian Seismic Belt and result from the subduction and collision of the Arabian and African Plates toward the Eurasian Plate.The western region of the Chinese mainland and its adjacent areas are in the eastern section of the Eurasian Seismic Belt,where seismic activity is controlled by the collision of the Indian and Eurasian Plates.Both China and Türkiye have independent tectonic histories.展开更多
基金supported by the China National Key Research and Development Program(2022YFF0800601)the Special fund of the Institute of Geophysics,China Earthquake Administration (DQJB23Z09)。
文摘For earthquakes (M≥4.0) occurring along and around the East Anatolian fault zone and the Dead Sea fault zone within ten years immediately before the MW7.8 Gaziantep earthquake,Türkiye,of February 6,2023,we explored the correlation between seismicity and the earth's rotation.We statistically evaluated the correlation using the Schuster's test.The results are quantitatively assessed by a p-value.We found a clear downward trend in the p-values from early 2020 to late 2022 in the studied region.We also obtained a spatial distribution of the p-values showing a low p-value area near the northeastern end of the aftershock zone.Although the stress induced by the rotation of the earth is very weak,it could control the earthquake occurrence when the focal medium is loaded to the critical state to release a large earthquake.The decrease in the b-value in the Gutenberg-Richter (G-R) relation is considered in the form of the tectonic stress increase in the crust.We investigated the b-value as a function of time in the study region.We found that the b-value had decreased for about eleven years before the p-value started to decrease,with a relative reduction of 57%.Therefore,the result of the lower p-values obtained in the present study infers that the earthquakes were dominated by the earth's rotation prior to the MW7.8 Türkiye earthquake due to a critical state of the focal region.
基金funded by the Basic Research Program of the Institute of Earthquake Forecasting,China Earthquake Administration(Grant Nos.CEAIEF20220102,2021IEF0505,and CEAIEF2022050502)the National Natural Science Foundation of China(Grant Nos.42072248 and 42041006)the National Key Research and Development Program of China(Grant Nos.2021YFC3000601-3 and 2019YFE0108900)。
文摘Both M_(W) 7.8 and M_(W) 7.5 earthquakes occurred in southeastern Türkiye on February 6,2023,resulting in numerous buildings collapsing and serious casualties.Understanding the distribution of coseismic surface ruptures and secondary disasters surrounding the epicentral area is important for post-earthquake emergency and disaster assessments.High-resolution Maxar and GF-2 satellite data were used after the events to extract the location of the rupture surrounding the first epicentral area.The results show that the length of the interpreted surface rupture zone(part of)is approximately 75 km,with a coseismic sinistral dislocation of 2-3 m near the epicenter;however,this reduced to zero at the tip of the southwest section of the East Anatolia Fault Zone.Moreover,dense soil liquefaction pits were triggered along the rupture trace.These events are in the western region of the Eurasian Seismic Belt and result from the subduction and collision of the Arabian and African Plates toward the Eurasian Plate.The western region of the Chinese mainland and its adjacent areas are in the eastern section of the Eurasian Seismic Belt,where seismic activity is controlled by the collision of the Indian and Eurasian Plates.Both China and Türkiye have independent tectonic histories.