The Total Coloring Conjecture (TCC) proposes that every simple graph G is (Δ + 2)-totally-colorable, where Δ is the maximum degree of G. For planar graph, TCC is open only in case Δ = 6. In this paper, we prove tha...The Total Coloring Conjecture (TCC) proposes that every simple graph G is (Δ + 2)-totally-colorable, where Δ is the maximum degree of G. For planar graph, TCC is open only in case Δ = 6. In this paper, we prove that TCC holds for planar graph with Δ = 6 and every 7-cycle contains at most two chords.展开更多
A k-total-coloring of a graph G is a coloring of vertices and edges of G using k colors such that no two adjacent or incident elements receive the same color.In this paper,it is proved that if G is a planar graph with...A k-total-coloring of a graph G is a coloring of vertices and edges of G using k colors such that no two adjacent or incident elements receive the same color.In this paper,it is proved that if G is a planar graph with Δ(G) ≥ 7 and without chordal 7-cycles,then G has a(Δ(G) + 1)-total-coloring.展开更多
文摘The Total Coloring Conjecture (TCC) proposes that every simple graph G is (Δ + 2)-totally-colorable, where Δ is the maximum degree of G. For planar graph, TCC is open only in case Δ = 6. In this paper, we prove that TCC holds for planar graph with Δ = 6 and every 7-cycle contains at most two chords.
基金Supported by National Natural Science Foundation of China(Grant No.11271006)
文摘A k-total-coloring of a graph G is a coloring of vertices and edges of G using k colors such that no two adjacent or incident elements receive the same color.In this paper,it is proved that if G is a planar graph with Δ(G) ≥ 7 and without chordal 7-cycles,then G has a(Δ(G) + 1)-total-coloring.