针对相对重力观测过程中可能受到环境等因素影响而出现高频信号和局部异常的情况,以2021年漾濞6.4级地震前重力变化为例,通过时空平滑约束重构重力变化数据,对比重构前后重力变化情况。基于球坐标系下六面体模型模拟场源体介质,反演场...针对相对重力观测过程中可能受到环境等因素影响而出现高频信号和局部异常的情况,以2021年漾濞6.4级地震前重力变化为例,通过时空平滑约束重构重力变化数据,对比重构前后重力变化情况。基于球坐标系下六面体模型模拟场源体介质,反演场源视密度变化,分析场源区介质密度演化特征。结果显示:观测数据经过时空平滑重构后,在不改变总体变化趋势的情况下,标准差由17.86×10-8 m/s 2降到8.99×10-8 m/s 2,变化值区间从(-74.20~66.28)×10-8 m/s 2降到(-21.79~27.70)×10-8 m/s 2,数据离散程度得到有效压缩,并能压制高频信号和局部噪声,孕震区域内重力变化时空演化趋势更加连续,便于异常特征的识别。场源区视密度变化显示有一个明显的NW-SE向物质迁移过程,在经过震中位置后逐渐收缩,在震中位置形成一个“孤岛”形态。孕震过程中正负变化分界线从SW-NE向转为NW-SE向,在分界线与构造走向一致后随即发震。展开更多
Garnet-type solid-state batteries(SSBs)are considered to be one of the most promising candidates to realize next-generation lithium metal batteries with high energy density and safety.However,the dendrite-induced shor...Garnet-type solid-state batteries(SSBs)are considered to be one of the most promising candidates to realize next-generation lithium metal batteries with high energy density and safety.However,the dendrite-induced short-circuit and the poor interfacial contact impeded the practical application.Herein,interface engineering to achieve low interfacial resistance without high temperature calcination was developed,which Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO)was simply coated with complex hydride(Li_(4)(BH_(4))_(3)I(3L1L))in various mass ratios n(Li_(4)(BH_(4))_(3)I)-(100−n)LLZTO(10≤n≤40).The interfacial conductivity increases by more than three orders of magnitude from 8.29×10^(−6)S·cm^(−1)to 1.10×10^(−2)S·cm^(−1).Symmetric Li cells exhibit a high critical current density(CCD)of 4.0 mA·cm^(−2) and an excellent cycling stability for 200 h at 4.0 mA·cm^(−2).SSBs with polymeric sulfur-polyacrylonitrile(SPAN)cathode achieve a high discharge capacity of 1149 mAh·g^(−1) with a capacity retention of 91%after 100 cycles(0.2 C).This attempt guides a simple yet efficient strategy for obtaining a stable Li/LLZTO interface,which would promote the development of solid-state batteries.展开更多
The Ms 6.4 earthquake occurred on May 21,2021 in Yangbi County,Dali Prefecture,Yunnan Province,which was the largest earthquake after the 2014 Jinggu Ms 6.6 earthquake,in western Yunnan.After the earthquake,the rapid ...The Ms 6.4 earthquake occurred on May 21,2021 in Yangbi County,Dali Prefecture,Yunnan Province,which was the largest earthquake after the 2014 Jinggu Ms 6.6 earthquake,in western Yunnan.After the earthquake,the rapid field investigation and earthquake relocation reveal that there was no obvious surface rupture and the earthquake did not occur on pre-existing active fault,but on a buried fault on the west side of Weixi–Qiaohou–Weishan fault zone in the eastern boundary of Baoshan sub-block.Significant foreshocks appeared three days before the earthquake.These phenomena aroused scholars'intensive attention.What the physical process and seismogenic mechanism of the Yangbi Ms 6.4 earthquake are revealed by the foreshocks and aftershocks?These scientific questions need to be solved urgently.展开更多
文摘针对相对重力观测过程中可能受到环境等因素影响而出现高频信号和局部异常的情况,以2021年漾濞6.4级地震前重力变化为例,通过时空平滑约束重构重力变化数据,对比重构前后重力变化情况。基于球坐标系下六面体模型模拟场源体介质,反演场源视密度变化,分析场源区介质密度演化特征。结果显示:观测数据经过时空平滑重构后,在不改变总体变化趋势的情况下,标准差由17.86×10-8 m/s 2降到8.99×10-8 m/s 2,变化值区间从(-74.20~66.28)×10-8 m/s 2降到(-21.79~27.70)×10-8 m/s 2,数据离散程度得到有效压缩,并能压制高频信号和局部噪声,孕震区域内重力变化时空演化趋势更加连续,便于异常特征的识别。场源区视密度变化显示有一个明显的NW-SE向物质迁移过程,在经过震中位置后逐渐收缩,在震中位置形成一个“孤岛”形态。孕震过程中正负变化分界线从SW-NE向转为NW-SE向,在分界线与构造走向一致后随即发震。
基金This study was financially supported by the National Natural Science Foundation of China(Nos.52171180,51802154,and 51971065)the National Science Fund for Distinguished Young Scholars(No.51625102)+3 种基金the Innovation Program of Shanghai Municipal Education Commission(No.2019-01-07-00-07-E00028)the Fundamental Research Funds for the Central Universities(No.NG2022005)the Open Fund for Graduate Innovation Base in Nanjing University of Aeronautics and Astronautics(No.xcxjh20210612)partially supported by the Fundamental Research Funds for the Central Universities,NS2021043.
文摘Garnet-type solid-state batteries(SSBs)are considered to be one of the most promising candidates to realize next-generation lithium metal batteries with high energy density and safety.However,the dendrite-induced short-circuit and the poor interfacial contact impeded the practical application.Herein,interface engineering to achieve low interfacial resistance without high temperature calcination was developed,which Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO)was simply coated with complex hydride(Li_(4)(BH_(4))_(3)I(3L1L))in various mass ratios n(Li_(4)(BH_(4))_(3)I)-(100−n)LLZTO(10≤n≤40).The interfacial conductivity increases by more than three orders of magnitude from 8.29×10^(−6)S·cm^(−1)to 1.10×10^(−2)S·cm^(−1).Symmetric Li cells exhibit a high critical current density(CCD)of 4.0 mA·cm^(−2) and an excellent cycling stability for 200 h at 4.0 mA·cm^(−2).SSBs with polymeric sulfur-polyacrylonitrile(SPAN)cathode achieve a high discharge capacity of 1149 mAh·g^(−1) with a capacity retention of 91%after 100 cycles(0.2 C).This attempt guides a simple yet efficient strategy for obtaining a stable Li/LLZTO interface,which would promote the development of solid-state batteries.
文摘The Ms 6.4 earthquake occurred on May 21,2021 in Yangbi County,Dali Prefecture,Yunnan Province,which was the largest earthquake after the 2014 Jinggu Ms 6.6 earthquake,in western Yunnan.After the earthquake,the rapid field investigation and earthquake relocation reveal that there was no obvious surface rupture and the earthquake did not occur on pre-existing active fault,but on a buried fault on the west side of Weixi–Qiaohou–Weishan fault zone in the eastern boundary of Baoshan sub-block.Significant foreshocks appeared three days before the earthquake.These phenomena aroused scholars'intensive attention.What the physical process and seismogenic mechanism of the Yangbi Ms 6.4 earthquake are revealed by the foreshocks and aftershocks?These scientific questions need to be solved urgently.