Current sway test platforms for marine nuclear equipment face challenges in meeting the GJB 150.23A requirements.This is primarily because of the performance limitations of conventional actuators under extreme marine ...Current sway test platforms for marine nuclear equipment face challenges in meeting the GJB 150.23A requirements.This is primarily because of the performance limitations of conventional actuators under extreme marine conditions.This study aimed to overcome these constraints using an innovative parallel mechanism design.We developed a novel 6-PUS parallel platform featuring six kinematic chains with hybrid series-parallel actuators.Each chain combines(1)force-speed adaptive transmission,(2)redundant motor-driven dual-screw actuation,and(3)passive load-balancing mechanisms.Comprehensive kinematic/dynamic modeling and experimental validation were conducted.Tests demonstrated the capability of the platform to achieve cyclic speeds of±45°/7 s and±30°/3 s while supporting 10-ton loads.Successful sway tests on nuclear components(reactor pressurizer and control rod drive mechanism)confirmed the operational reliability.This work presented three key innovations:(1)a new parallel-platform architecture that overcomes the limitations of conventional actuators;(2)integrated hybrid actuation with adaptive transmission;and(3)high-speed,heavy-load performance that meets stringent marine testing standards.This solution significantly advances nuclear equipment qualification testing technology.展开更多
基金Supported by Shanghai Nuclear Engineering Research&Design Institute Co.,Ltd.
文摘Current sway test platforms for marine nuclear equipment face challenges in meeting the GJB 150.23A requirements.This is primarily because of the performance limitations of conventional actuators under extreme marine conditions.This study aimed to overcome these constraints using an innovative parallel mechanism design.We developed a novel 6-PUS parallel platform featuring six kinematic chains with hybrid series-parallel actuators.Each chain combines(1)force-speed adaptive transmission,(2)redundant motor-driven dual-screw actuation,and(3)passive load-balancing mechanisms.Comprehensive kinematic/dynamic modeling and experimental validation were conducted.Tests demonstrated the capability of the platform to achieve cyclic speeds of±45°/7 s and±30°/3 s while supporting 10-ton loads.Successful sway tests on nuclear components(reactor pressurizer and control rod drive mechanism)confirmed the operational reliability.This work presented three key innovations:(1)a new parallel-platform architecture that overcomes the limitations of conventional actuators;(2)integrated hybrid actuation with adaptive transmission;and(3)high-speed,heavy-load performance that meets stringent marine testing standards.This solution significantly advances nuclear equipment qualification testing technology.