Manufacture variations can greatly increase the performance variability of compressor blades. Current robust design optimization methods have a critical role in reducing the adverse impact of the variations, but can b...Manufacture variations can greatly increase the performance variability of compressor blades. Current robust design optimization methods have a critical role in reducing the adverse impact of the variations, but can be affected by errors if the assumptions of the deviation models and distribution parameters are inaccurate. A new approach for robust design optimization without the employment of the deviation models is proposed. The deviation package method and the interval estimation method are exploited in this new approach. Simultaneously, a stratified strategy is used to reduce the computational cost and assure the optimization accuracy. The test case employed for this study is a typical transonic compressor blade profile, which resembles most of the manufacture features of modern compressor blades. A set of 96 newly manufactured blades was measured using a coordinate measurement machine to obtain the manufacture variations and produce a deviation package. The optimization results show that the scatter of the aerodynamic performance for the optimal robust design is 20% less than the baseline value. By comparing the optimization results obtained from the deviation package method with those obtained from widely-used methods employing the deviation model, the efficiency and accuracy of the deviation package method are demonstrated. Finally, the physical mechanisms that control the robustness of different designs were further investigated, and some statistical laws of robust design were extracted.展开更多
The influence of processing parameters on the precision of parts fabricated by fused deposition modeling (FDM) technology is studied based on a series of performed experiments. Processing parameters of FDM in terms ...The influence of processing parameters on the precision of parts fabricated by fused deposition modeling (FDM) technology is studied based on a series of performed experiments. Processing parameters of FDM in terms of wire-width compensation, extrusion velocity, filing velocity, and layer thickness are chosen as the control fac- tors. Robust design analysis and multi-index fuzzy comprehensive assessment method are used to obtain the opti- mal parameters. Results show that the influencing degrees of these four factors on the precision of as-processed parts are different. The optimizations of individual parameters and their combined effects are of the same impor- tance for a high precision manufacturing.展开更多
Energy system optimization has become crucial for enhancing efficiency and environmental sustainability.This comprehensive review examines the synergistic application of Artificial Neural Networks(ANN)and Taguchi meth...Energy system optimization has become crucial for enhancing efficiency and environmental sustainability.This comprehensive review examines the synergistic application of Artificial Neural Networks(ANN)and Taguchi methods in optimizing diverse energy systems.While previous reviews have focused on these methods separately,this paper presents the first integrated analysis of both approaches across multiple energy applications.We systematically analyze their implementation in:Internal combustion engines,Thermal energy storage systems,Solar energy systems,Wind and tidal turbines,Heat exchangers,and hybrid energy systems.Our findings reveal that ANN models consistently achieve prediction accuracies exceeding 90%when compared to experimental data,while Taguchi-based methods combined with Grey Relational Analysis(GRA)or TOPSIS can improve system performance by up to 20%30%in multi-objective optimization scenarios.The review introduces novel frameworks for combining these methods and provides critical insights into their complementary strengths.Key statistical metrics,including determination coefficients and error analyses,validate the superior performance of integrated approaches.This work serves as a foundational reference for researchers and practitioners in energy system optimization,offering structured methodologies and future research directions.展开更多
Over-the-air computation(AirComp)enables federated learning(FL)to rapidly aggregate local models at the central server using waveform superposition property of wireless channel.In this paper,a robust transmission sche...Over-the-air computation(AirComp)enables federated learning(FL)to rapidly aggregate local models at the central server using waveform superposition property of wireless channel.In this paper,a robust transmission scheme for an AirCompbased FL system with imperfect channel state information(CSI)is proposed.To model CSI uncertainty,an expectation-based error model is utilized.The main objective is to maximize the number of selected devices that meet mean-squared error(MSE)requirements for model broadcast and model aggregation.The problem is formulated as a combinatorial optimization problem and is solved in two steps.First,the priority order of devices is determined by a sparsity-inducing procedure.Then,a feasibility detection scheme is used to select the maximum number of devices to guarantee that the MSE requirements are met.An alternating optimization(AO)scheme is used to transform the resulting nonconvex problem into two convex subproblems.Numerical results illustrate the effectiveness and robustness of the proposed scheme.展开更多
In the reliability designing procedure of the vehicle components, when the distribution styles of the random variables are unknown or non-normal distribution, the result evaluated contains great error or even is wrong...In the reliability designing procedure of the vehicle components, when the distribution styles of the random variables are unknown or non-normal distribution, the result evaluated contains great error or even is wrong if the reliability value R is larger than 1 by using the existent method, in which case the formula is necessary to be revised. This is obviously inconvenient for programming. Combining reliability-based optimization theory, robust designing method and reliability based sensitivity analysis, a new method for reliability robust designing is proposed. Therefore the influence level of the designing parameters’ changing to the reliability of vehicle components can be obtained. The reliability sensitivity with respect to design parameters is viewed as a sub-objective function in the multi-objective optimization problem satisfying reliability constraints. Given the first four moments of basic random variables, a fourth-moment technique and the proposed optimization procedure can obtain reliability-based robust design of automobile components with non-normal distribution parameters accurately and quickly. By using the proposed method, the distribution style of the random parameters is relaxed. Therefore it is much closer to the actual reliability problems. The numerical examples indicate the following: (1) The reliability value obtained by the robust method proposed increases (】0.04%) comparing to the value obtained by the ordinary optimization algorithm; (2) The absolute value of reliability-based sensitivity decreases (】0.01%), and the robustness of the products’ quality is improved accordingly. Utilizing the reliability-based optimization and robust design method in the reliability designing procedure reduces the manufacture cost and provides the theoretical basis for the reliability and robust design of the vehicle components.展开更多
An aeroelastic two-level optimization methodology for preliminary design of wing struc- tures is presented, in which the parameters for structural layout and sizes are taken as design vari- ables in the first-level op...An aeroelastic two-level optimization methodology for preliminary design of wing struc- tures is presented, in which the parameters for structural layout and sizes are taken as design vari- ables in the first-level optimization, and robust constraints in conjunction with conventional aeroelastic constraints are considered in the second-level optimization. A low-order panel method is used for aerodynamic analysis in the first-level optimization, and a high-order panel method is employed in the second-level optimization. It is concluded that the design of the abovementioned structural parameters of a wing can be improved using the present method with high efficiency. An improvement is seen in aeroelastic performance of the wing obtained with the present method when compared to the initial wing. Since these optimized structures are obtained after consideration of aerodynamic and structural uncertainties, they are well suited to encounter these uncertainties when they occur in reality.展开更多
This paper presents a Fuzzy Preference Function-based Robust Multidisciplinary Design Optimization(FPF-RMDO) methodology. This method is an effective approach to multidisciplinary systems, which can be used to designe...This paper presents a Fuzzy Preference Function-based Robust Multidisciplinary Design Optimization(FPF-RMDO) methodology. This method is an effective approach to multidisciplinary systems, which can be used to designer experiences during the design optimization process by fuzzy preference functions. In this study, two optimizations are done for Predator MQ-1 Unmanned Aerial Vehicle(UAV):(A) deterministic optimization and(B) robust optimization. In both problems, minimization of takeoff weight and drag is considered as objective functions, which have been optimized using Non-dominated Sorting Genetic Algorithm(NSGA). In the robust design optimization, cruise altitude and velocity are considered as uncertainties that are modeled by the Monte Carlo Simulation(MCS) method. Aerodynamics, stability and control, mass properties, performance, and center of gravity are used for multidisciplinary analysis. Robust design optimization results show 46% and 42% robustness improvement for takeoff weight and cruise drag relative to optimal design respectively.展开更多
The current research of complex nonlinear system robust optimization mainly focuses on the features of design parameters, such as probability density functions, boundary conditions, etc. After parameters study, high-d...The current research of complex nonlinear system robust optimization mainly focuses on the features of design parameters, such as probability density functions, boundary conditions, etc. After parameters study, high-dimensional curve or robust control design is used to find an accurate robust solution. However, there may exist complex interaction between parameters and practical engineering system. With the increase of the number of parameters, it is getting hard to determine high-dimensional curves and robust control methods, thus it's difficult to get the robust design solutions. In this paper, a method of global sensitivity analysis based on divided variables in groups is proposed. By making relevant variables in one group and keeping each other independent among sets of variables, global sensitivity analysis is conducted in grouped variables and the importance of parameters is evaluated by calculating the contribution value of each parameter to the total variance of system response. By ranking the importance of input parameters, relatively important parameters are chosen to conduct robust design analysis of the system. By applying this method to the robust optimization design of a real complex nonlinear system-a vehicle occupant restraint system with multi-parameter, good solution is gained and the response variance of the objective function is reduced to 0.01, which indicates that the robustness of the occupant restraint system is improved in a great degree and the method is effective and valuable for the robust design of complex nonlinear system. This research proposes a new method which can be used to obtain solutions for complex nonlinear system robust design.展开更多
Because uncertainty factors inevitably exist under multidisciplinary designenvironment, a hierarchical multidisciplinary robust optimization design based on response surfaceis proposed. The method constructs optimizat...Because uncertainty factors inevitably exist under multidisciplinary designenvironment, a hierarchical multidisciplinary robust optimization design based on response surfaceis proposed. The method constructs optimization model of subsystem level and system level tocoordinate the coupling among subsystems, and also the response surface based on the artificialneural network is introduced to provide information for system level optimization tool to maintainthe independence of subsystems, i.e. to realize multidisciplinary parallel design. The applicationcase of electrical packaging demonstrates that reasonable robust optimum solution can be yielded andit is a potential and efficient multi-disciplinary robust optimization approach.展开更多
Blade fouling has been proved to be a great threat to compressor performance in operating stage. The current researches on fouling-induced performance degradations of centrifugal compressors are based mainly on simpli...Blade fouling has been proved to be a great threat to compressor performance in operating stage. The current researches on fouling-induced performance degradations of centrifugal compressors are based mainly on simplified roughness models without taking into account the realistic factors such as spatial non-uniformity and randomness of the fouling-induced surface roughness. Moreover, little attention has been paid to the robust design optimization of centrifugal compressor impellers with considerations of blade fouling. In this paper, a multi-objective robust design optimization method is developed for centrifugal impellers under surface roughness uncertainties due to blade fouling. A three-dimensional surface roughness map is proposed to describe the nonuniformity and randomness of realistic fouling accumulations on blades. To lower computational cost in robust design optimization, the support vector regression(SVR) metamodel is combined with the Monte Carlo simulation(MCS) method to conduct the uncertainty analysis of fouled impeller performance. The analyzed results show that the critical fouled region associated with impeller performance degradations lies at the leading edge of blade tip. The SVR metamodel has been proved to be an efficient and accurate means in the detection of impeller performance variations caused by roughness uncertainties. After design optimization, the robust optimal design is found to be more efficient and less sensitive to fouling uncertainties while maintaining good impeller performance in the clean condition. This research proposes a systematic design optimization method for centrifugal compressors with considerations of blade fouling, providing a practical guidance to the design of advanced centrifugal compressors.展开更多
It is an inherent uncertainty problem that the application of laminar flow technology to the wing of large passenger aircraft is affected by flight conditions.In order to seek a more robust natural laminar flow contro...It is an inherent uncertainty problem that the application of laminar flow technology to the wing of large passenger aircraft is affected by flight conditions.In order to seek a more robust natural laminar flow control effect,it is necessary to develop an effective optimization design method.Meanwhile,attention must be given to the impact of crossflow(CF)instability brought on by the sweep angle.This paper constructs a robust optimization design framework based on discrete adjoint methods and non-intrusive polynomial chaos.Transition prediction is implemented by coupled Reynolds-Averaged Navier-Stokes(RANS)and simplified e^(N)method,which can consider both Tollmien-Schlichting(TS)wave and crossflow vortex instability.We have performed gradient enhancement processing on the general Polynomial Chaos Expansion(PCE),which is advantageous to reduce the computational cost of single uncertainty propagation.This processing takes advantage of the gradient information obtained by solving the coupled adjoint equations considering transition.The statistical moment gradient solution used for the robust optimization design also uses the derivatives of coupled adjoint equations.The framework is applied to the robust design of a 25°swept wing with infinite span in transonic flow.The uncertainty quantification and sensitivity analysis on the baseline wing shows that the uncertainty quantification method in this paper has high accuracy,and qualitatively reveals the factors that dominate in different flow field regions.By the robust optimization design,the mean and standard deviation of the drag coefficient can be reduced by 29%and 45%,respectively,and compared with the deterministic optimization design results,there is less possibility of forming shock waves under flight condition uncertainties.Robust optimization results illustrate the trade-off between the transition delay and the wave drag reduction.展开更多
A surrogate based particle swarm optimization (SBPSO) algorithm which combines the surrogate modeling technique and particle swarm optimization is applied to the reliability- based robust design (RBRD) of composit...A surrogate based particle swarm optimization (SBPSO) algorithm which combines the surrogate modeling technique and particle swarm optimization is applied to the reliability- based robust design (RBRD) of composite pressure vessels. The algorithm and efficiency of SBPSO are displayed through numerical examples. A model for filament-wound composite pressure vessels with metallic liner is then studied by netting analysis and its responses are analyzed by using Finite element method (performed by software ANSYS). An optimization problem for maximizing the performance factor is formulated by choosing the winding orientation of the helical plies in the cylindrical portion, the thickness of metal liner and the drop off region size as the design variables. Strength constraints for composite layers and the metal liner are constructed by using Tsai-Wu failure criterion and Mises failure criterion respectively. Numerical examples show that the method proposed can effectively solve the RBRD problem, and the optimal results of the proposed model can satisfy certain reliability requirement and have the robustness to the fluctuation of design variables.展开更多
Minimizing the impact of the mixed uncertainties(i.e.,the aleatory uncertainty and the epistemic uncertainty) for a complex product of compliant mechanism(CPCM) quality improvement signifies a fascinating research top...Minimizing the impact of the mixed uncertainties(i.e.,the aleatory uncertainty and the epistemic uncertainty) for a complex product of compliant mechanism(CPCM) quality improvement signifies a fascinating research topic to enhance the robustness.However, most of the existing works in the CPCM robust design optimization neglect the mixed uncertainties, which might result in an unstable design or even an infeasible design. To solve this issue, a response surface methodology-based hybrid robust design optimization(RSM-based HRDO) approach is proposed to improve the robustness of the quality characteristic for the CPCM via considering the mixed uncertainties in the robust design optimization. A bridge-type amplification mechanism is used to manifest the effectiveness of the proposed approach. The comparison results prove that the proposed approach can not only keep its superiority in the robustness, but also provide a robust scheme for optimizing the design parameters.展开更多
The robust design optimization(RDO)is an effective method to improve product performance with uncertainty factors.The robust optimal solution should be not only satisfied the probabilistic constraints but also less se...The robust design optimization(RDO)is an effective method to improve product performance with uncertainty factors.The robust optimal solution should be not only satisfied the probabilistic constraints but also less sensitive to the variation of design variables.There are some important issues in RDO,such as how to judge robustness,deal with multi-objective problem and black-box situation.In this paper,two criteria are proposed to judge the deterministic optimal solution whether satisfies robustness requirment.The robustness measure based on maximum entropy is proposed.Weighted sum method is improved to deal with the objective function,and the basic framework of metamodel assisted robust optimization is also provided for improving the efficiency.Finally,several engineering examples are used to verify the advantages.展开更多
To increase the robustness of the optimization solutions of the mixed-flow pump,the impeller was firstly indirectly parameterized based on the 2D blade design theory.Secondly,the robustness of the optimization solutio...To increase the robustness of the optimization solutions of the mixed-flow pump,the impeller was firstly indirectly parameterized based on the 2D blade design theory.Secondly,the robustness of the optimization solution was mathematically defined,and then calculated by Monte Carlo sampling method.Thirdly,the optimization on the mixed-flow pump′s impeller was decomposed into the optimal and robust sub-optimization problems,to maximize the pump head and efficiency and minimize the fluctuation degree of them under varying working conditions at the same time.Fourthly,using response surface model,a surrogate model was established between the optimization objectives and control variables of the shape of the impeller.Finally,based on a multi-objective genetic optimization algorithm,a two-loop iterative optimization process was designed to find the optimal solution with good robustness.Comparing the original and optimized pump,it is found that the internal flow field of the optimized pump has been improved under various operating conditions,the hydraulic performance has been improved consequently,and the range of high efficient zone has also been widened.Besides,with the changing of working conditions,the change trend of the hydraulic performance of the optimized pump becomes gentler,the flow field distribution is more uniform,and the influence degree of the varia-tion of working conditions decreases,and the operating stability of the pump is improved.It is concluded that the robust optimization method proposed in this paper is a reasonable way to optimize the mixed-flow pump,and provides references for optimization problems of other fluid machinery.展开更多
This study presents a robust design method for autonomous photovoltaic (PV)-wind hybrid power systems to obtain an optimum system configuration insensitive to design variable variations. This issue has been formulated...This study presents a robust design method for autonomous photovoltaic (PV)-wind hybrid power systems to obtain an optimum system configuration insensitive to design variable variations. This issue has been formulated as a constraint multi-objective optimization problem, which is solved by a multi-objective genetic algorithm, NSGA-II. Monte Carlo Simulation (MCS) method, combined with Latin Hypercube Sampling (LHS), is applied to evaluate the stochastic system performance. The potential of the proposed method has been demonstrated by a conceptual system design. A comparative study between the proposed robust method and the deterministic method presented in literature has been conducted. The results indicate that the proposed method can find a large mount of Pareto optimal system configurations with better compromising performance than the deterministic method. The trade-off information may be derived by a systematical comparison of these configurations. The proposed robust design method should be useful for hybrid power systems that require both optimality and robustness.展开更多
Design and optimization of electrical drive systems often involve simultaneous consideration of multiple objectives that usually contradict to each other and multiple disciplines that normally coupled to each other.Th...Design and optimization of electrical drive systems often involve simultaneous consideration of multiple objectives that usually contradict to each other and multiple disciplines that normally coupled to each other.This paper aims to present efficient system-level multiobjective optimization methods for the multidisciplinary design optimization of electrical drive systems.From the perspective of quality control,deterministic and robust approaches will be investigated for the development of the optimization models for the proposed methods.Meanwhile,two approximation methods,Kriging model and Taylor expansion are employed to decrease the computation/simulation cost.To illustrate the advantages of the proposed methods,a drive system with a permanent magnet synchronous motor driven by a field oriented control system is investigated.Deterministic and robust Pareto optimal solutions are presented and compared in terms of several steady-state and dynamic performances(like average torque and speed overshoot)of the drive system.The robust multiobjective optimization method can produce optimal Pareto solutions with high manufacturing quality for the drive system.展开更多
A robust optimization design method is proposed to investigate the influence of the hook position on the vertical vibration(bending)of an automobile exhaust system.A block diagram for the robustness analysis of the ex...A robust optimization design method is proposed to investigate the influence of the hook position on the vertical vibration(bending)of an automobile exhaust system.A block diagram for the robustness analysis of the exhaust system is initially constructed from the major affecting factors.Secondly,the second-order inertia force is set as the vibration excitation source of the exhaust system and the displacement of four hooks of the exhaust system is selected as the variable factor.Then tests are carried out to investigate the resulting vertical bending considering four influencing factors and three levels of analysis.Finally,a variance analysis of the vertical bending is performed.The present study provides a set of guidelines to control the key factors affecting the vibration of vehicle exhaust systems while proposing an effective method to reduce vehicle vibration and improve noise analysis。展开更多
The problem of robust design is treated as a multi-objective optimization issue in which the performance mean and variation are optimized and minimized respectively, while maintaining the feasibility of design constra...The problem of robust design is treated as a multi-objective optimization issue in which the performance mean and variation are optimized and minimized respectively, while maintaining the feasibility of design constraints under uncertainty. To effectively address this issue in robust design, this paper presents a novel robust optimization approach which integrates multi-objective optimization concepts with Taguchi’s crossed arrays techniques. In this approach, Pareto-optimal robust design solution sets are obtained with the aid of design of experiment set-ups, which utilize the results of Analysis of Variance to quantify relative dominance and significance of design variables. A beam design problem is used to illustrate the effectiveness of the proposed approach.展开更多
基金funded by the National Science and Technology Major Project, China (No. 2017-II-0001-0013)Science Center for Gas Turbine Project, China (Nos. P2022-A-II-002-001 and P2022-B-II-002-001)。
文摘Manufacture variations can greatly increase the performance variability of compressor blades. Current robust design optimization methods have a critical role in reducing the adverse impact of the variations, but can be affected by errors if the assumptions of the deviation models and distribution parameters are inaccurate. A new approach for robust design optimization without the employment of the deviation models is proposed. The deviation package method and the interval estimation method are exploited in this new approach. Simultaneously, a stratified strategy is used to reduce the computational cost and assure the optimization accuracy. The test case employed for this study is a typical transonic compressor blade profile, which resembles most of the manufacture features of modern compressor blades. A set of 96 newly manufactured blades was measured using a coordinate measurement machine to obtain the manufacture variations and produce a deviation package. The optimization results show that the scatter of the aerodynamic performance for the optimal robust design is 20% less than the baseline value. By comparing the optimization results obtained from the deviation package method with those obtained from widely-used methods employing the deviation model, the efficiency and accuracy of the deviation package method are demonstrated. Finally, the physical mechanisms that control the robustness of different designs were further investigated, and some statistical laws of robust design were extracted.
基金Supported by the Science and Technology Support Key Project of 12th Five-Year of China(2011BAD20B00-4)~~
文摘The influence of processing parameters on the precision of parts fabricated by fused deposition modeling (FDM) technology is studied based on a series of performed experiments. Processing parameters of FDM in terms of wire-width compensation, extrusion velocity, filing velocity, and layer thickness are chosen as the control fac- tors. Robust design analysis and multi-index fuzzy comprehensive assessment method are used to obtain the opti- mal parameters. Results show that the influencing degrees of these four factors on the precision of as-processed parts are different. The optimizations of individual parameters and their combined effects are of the same impor- tance for a high precision manufacturing.
文摘Energy system optimization has become crucial for enhancing efficiency and environmental sustainability.This comprehensive review examines the synergistic application of Artificial Neural Networks(ANN)and Taguchi methods in optimizing diverse energy systems.While previous reviews have focused on these methods separately,this paper presents the first integrated analysis of both approaches across multiple energy applications.We systematically analyze their implementation in:Internal combustion engines,Thermal energy storage systems,Solar energy systems,Wind and tidal turbines,Heat exchangers,and hybrid energy systems.Our findings reveal that ANN models consistently achieve prediction accuracies exceeding 90%when compared to experimental data,while Taguchi-based methods combined with Grey Relational Analysis(GRA)or TOPSIS can improve system performance by up to 20%30%in multi-objective optimization scenarios.The review introduces novel frameworks for combining these methods and provides critical insights into their complementary strengths.Key statistical metrics,including determination coefficients and error analyses,validate the superior performance of integrated approaches.This work serves as a foundational reference for researchers and practitioners in energy system optimization,offering structured methodologies and future research directions.
文摘Over-the-air computation(AirComp)enables federated learning(FL)to rapidly aggregate local models at the central server using waveform superposition property of wireless channel.In this paper,a robust transmission scheme for an AirCompbased FL system with imperfect channel state information(CSI)is proposed.To model CSI uncertainty,an expectation-based error model is utilized.The main objective is to maximize the number of selected devices that meet mean-squared error(MSE)requirements for model broadcast and model aggregation.The problem is formulated as a combinatorial optimization problem and is solved in two steps.First,the priority order of devices is determined by a sparsity-inducing procedure.Then,a feasibility detection scheme is used to select the maximum number of devices to guarantee that the MSE requirements are met.An alternating optimization(AO)scheme is used to transform the resulting nonconvex problem into two convex subproblems.Numerical results illustrate the effectiveness and robustness of the proposed scheme.
基金supported by National Natural Science Foundation of China (Grant Nos. 51135003, U1234208, 51205050)New Teachers' Fund for Doctor Stations of Ministry of Education of China (Grant No.20110042120020)+1 种基金Fundamental Research Funds for the Central Universities, China (Grant No. N110303003)China Postdoctoral Science Foundation (Grant No. 2011M500564)
文摘In the reliability designing procedure of the vehicle components, when the distribution styles of the random variables are unknown or non-normal distribution, the result evaluated contains great error or even is wrong if the reliability value R is larger than 1 by using the existent method, in which case the formula is necessary to be revised. This is obviously inconvenient for programming. Combining reliability-based optimization theory, robust designing method and reliability based sensitivity analysis, a new method for reliability robust designing is proposed. Therefore the influence level of the designing parameters’ changing to the reliability of vehicle components can be obtained. The reliability sensitivity with respect to design parameters is viewed as a sub-objective function in the multi-objective optimization problem satisfying reliability constraints. Given the first four moments of basic random variables, a fourth-moment technique and the proposed optimization procedure can obtain reliability-based robust design of automobile components with non-normal distribution parameters accurately and quickly. By using the proposed method, the distribution style of the random parameters is relaxed. Therefore it is much closer to the actual reliability problems. The numerical examples indicate the following: (1) The reliability value obtained by the robust method proposed increases (】0.04%) comparing to the value obtained by the ordinary optimization algorithm; (2) The absolute value of reliability-based sensitivity decreases (】0.01%), and the robustness of the products’ quality is improved accordingly. Utilizing the reliability-based optimization and robust design method in the reliability designing procedure reduces the manufacture cost and provides the theoretical basis for the reliability and robust design of the vehicle components.
基金supported by the National Natural Science Foundation of China (No. 11172025 and No. 91116005)
文摘An aeroelastic two-level optimization methodology for preliminary design of wing struc- tures is presented, in which the parameters for structural layout and sizes are taken as design vari- ables in the first-level optimization, and robust constraints in conjunction with conventional aeroelastic constraints are considered in the second-level optimization. A low-order panel method is used for aerodynamic analysis in the first-level optimization, and a high-order panel method is employed in the second-level optimization. It is concluded that the design of the abovementioned structural parameters of a wing can be improved using the present method with high efficiency. An improvement is seen in aeroelastic performance of the wing obtained with the present method when compared to the initial wing. Since these optimized structures are obtained after consideration of aerodynamic and structural uncertainties, they are well suited to encounter these uncertainties when they occur in reality.
文摘This paper presents a Fuzzy Preference Function-based Robust Multidisciplinary Design Optimization(FPF-RMDO) methodology. This method is an effective approach to multidisciplinary systems, which can be used to designer experiences during the design optimization process by fuzzy preference functions. In this study, two optimizations are done for Predator MQ-1 Unmanned Aerial Vehicle(UAV):(A) deterministic optimization and(B) robust optimization. In both problems, minimization of takeoff weight and drag is considered as objective functions, which have been optimized using Non-dominated Sorting Genetic Algorithm(NSGA). In the robust design optimization, cruise altitude and velocity are considered as uncertainties that are modeled by the Monte Carlo Simulation(MCS) method. Aerodynamics, stability and control, mass properties, performance, and center of gravity are used for multidisciplinary analysis. Robust design optimization results show 46% and 42% robustness improvement for takeoff weight and cruise drag relative to optimal design respectively.
基金Supported by National Natural Science Foundation of China(Grant No.51275164)
文摘The current research of complex nonlinear system robust optimization mainly focuses on the features of design parameters, such as probability density functions, boundary conditions, etc. After parameters study, high-dimensional curve or robust control design is used to find an accurate robust solution. However, there may exist complex interaction between parameters and practical engineering system. With the increase of the number of parameters, it is getting hard to determine high-dimensional curves and robust control methods, thus it's difficult to get the robust design solutions. In this paper, a method of global sensitivity analysis based on divided variables in groups is proposed. By making relevant variables in one group and keeping each other independent among sets of variables, global sensitivity analysis is conducted in grouped variables and the importance of parameters is evaluated by calculating the contribution value of each parameter to the total variance of system response. By ranking the importance of input parameters, relatively important parameters are chosen to conduct robust design analysis of the system. By applying this method to the robust optimization design of a real complex nonlinear system-a vehicle occupant restraint system with multi-parameter, good solution is gained and the response variance of the objective function is reduced to 0.01, which indicates that the robustness of the occupant restraint system is improved in a great degree and the method is effective and valuable for the robust design of complex nonlinear system. This research proposes a new method which can be used to obtain solutions for complex nonlinear system robust design.
基金This project is supported by National Natural Science Foundation of China (No.50075028, No.70150001, No.60474077) National 863 Hi-tech. Program of China(No.2002AA414510) Specialized Research Fund for the Doctor Program of Higher Education of China(No.20010487024)
文摘Because uncertainty factors inevitably exist under multidisciplinary designenvironment, a hierarchical multidisciplinary robust optimization design based on response surfaceis proposed. The method constructs optimization model of subsystem level and system level tocoordinate the coupling among subsystems, and also the response surface based on the artificialneural network is introduced to provide information for system level optimization tool to maintainthe independence of subsystems, i.e. to realize multidisciplinary parallel design. The applicationcase of electrical packaging demonstrates that reasonable robust optimum solution can be yielded andit is a potential and efficient multi-disciplinary robust optimization approach.
基金Supported by National Natural Science Foundation of China(Grant No.51406148)National Science Technology Support Program of China(Grant No.2012BAA08B06)Postdoctoral Scientific Foundation of China(Grant No.2014M552444)
文摘Blade fouling has been proved to be a great threat to compressor performance in operating stage. The current researches on fouling-induced performance degradations of centrifugal compressors are based mainly on simplified roughness models without taking into account the realistic factors such as spatial non-uniformity and randomness of the fouling-induced surface roughness. Moreover, little attention has been paid to the robust design optimization of centrifugal compressor impellers with considerations of blade fouling. In this paper, a multi-objective robust design optimization method is developed for centrifugal impellers under surface roughness uncertainties due to blade fouling. A three-dimensional surface roughness map is proposed to describe the nonuniformity and randomness of realistic fouling accumulations on blades. To lower computational cost in robust design optimization, the support vector regression(SVR) metamodel is combined with the Monte Carlo simulation(MCS) method to conduct the uncertainty analysis of fouled impeller performance. The analyzed results show that the critical fouled region associated with impeller performance degradations lies at the leading edge of blade tip. The SVR metamodel has been proved to be an efficient and accurate means in the detection of impeller performance variations caused by roughness uncertainties. After design optimization, the robust optimal design is found to be more efficient and less sensitive to fouling uncertainties while maintaining good impeller performance in the clean condition. This research proposes a systematic design optimization method for centrifugal compressors with considerations of blade fouling, providing a practical guidance to the design of advanced centrifugal compressors.
文摘It is an inherent uncertainty problem that the application of laminar flow technology to the wing of large passenger aircraft is affected by flight conditions.In order to seek a more robust natural laminar flow control effect,it is necessary to develop an effective optimization design method.Meanwhile,attention must be given to the impact of crossflow(CF)instability brought on by the sweep angle.This paper constructs a robust optimization design framework based on discrete adjoint methods and non-intrusive polynomial chaos.Transition prediction is implemented by coupled Reynolds-Averaged Navier-Stokes(RANS)and simplified e^(N)method,which can consider both Tollmien-Schlichting(TS)wave and crossflow vortex instability.We have performed gradient enhancement processing on the general Polynomial Chaos Expansion(PCE),which is advantageous to reduce the computational cost of single uncertainty propagation.This processing takes advantage of the gradient information obtained by solving the coupled adjoint equations considering transition.The statistical moment gradient solution used for the robust optimization design also uses the derivatives of coupled adjoint equations.The framework is applied to the robust design of a 25°swept wing with infinite span in transonic flow.The uncertainty quantification and sensitivity analysis on the baseline wing shows that the uncertainty quantification method in this paper has high accuracy,and qualitatively reveals the factors that dominate in different flow field regions.By the robust optimization design,the mean and standard deviation of the drag coefficient can be reduced by 29%and 45%,respectively,and compared with the deterministic optimization design results,there is less possibility of forming shock waves under flight condition uncertainties.Robust optimization results illustrate the trade-off between the transition delay and the wave drag reduction.
基金supported by the Natural Science Foundation of China(No.10772070)National Basic Research Program of China(No.2011CB013800)
文摘A surrogate based particle swarm optimization (SBPSO) algorithm which combines the surrogate modeling technique and particle swarm optimization is applied to the reliability- based robust design (RBRD) of composite pressure vessels. The algorithm and efficiency of SBPSO are displayed through numerical examples. A model for filament-wound composite pressure vessels with metallic liner is then studied by netting analysis and its responses are analyzed by using Finite element method (performed by software ANSYS). An optimization problem for maximizing the performance factor is formulated by choosing the winding orientation of the helical plies in the cylindrical portion, the thickness of metal liner and the drop off region size as the design variables. Strength constraints for composite layers and the metal liner are constructed by using Tsai-Wu failure criterion and Mises failure criterion respectively. Numerical examples show that the method proposed can effectively solve the RBRD problem, and the optimal results of the proposed model can satisfy certain reliability requirement and have the robustness to the fluctuation of design variables.
基金supported by the National Natural Science Foundation of China(71702072 71811540414+2 种基金 71573115)the Natural Science Foundation for Jiangsu Institutions(BK20170810)the Ministry of Education of Humanities and Social Science Planning Fund(18YJA630008)
文摘Minimizing the impact of the mixed uncertainties(i.e.,the aleatory uncertainty and the epistemic uncertainty) for a complex product of compliant mechanism(CPCM) quality improvement signifies a fascinating research topic to enhance the robustness.However, most of the existing works in the CPCM robust design optimization neglect the mixed uncertainties, which might result in an unstable design or even an infeasible design. To solve this issue, a response surface methodology-based hybrid robust design optimization(RSM-based HRDO) approach is proposed to improve the robustness of the quality characteristic for the CPCM via considering the mixed uncertainties in the robust design optimization. A bridge-type amplification mechanism is used to manifest the effectiveness of the proposed approach. The comparison results prove that the proposed approach can not only keep its superiority in the robustness, but also provide a robust scheme for optimizing the design parameters.
基金The study is supported by the National Numerical Wind tunnel project(No.2019ZT2-A05)the Nature Science Foundation of China(No.11902254).
文摘The robust design optimization(RDO)is an effective method to improve product performance with uncertainty factors.The robust optimal solution should be not only satisfied the probabilistic constraints but also less sensitive to the variation of design variables.There are some important issues in RDO,such as how to judge robustness,deal with multi-objective problem and black-box situation.In this paper,two criteria are proposed to judge the deterministic optimal solution whether satisfies robustness requirment.The robustness measure based on maximum entropy is proposed.Weighted sum method is improved to deal with the objective function,and the basic framework of metamodel assisted robust optimization is also provided for improving the efficiency.Finally,several engineering examples are used to verify the advantages.
基金National Natural Science Foundation of China(51609107)Open Subject of Provincial and Ministerial Discipline Platform of Xihua University(szjj2018-123)。
文摘To increase the robustness of the optimization solutions of the mixed-flow pump,the impeller was firstly indirectly parameterized based on the 2D blade design theory.Secondly,the robustness of the optimization solution was mathematically defined,and then calculated by Monte Carlo sampling method.Thirdly,the optimization on the mixed-flow pump′s impeller was decomposed into the optimal and robust sub-optimization problems,to maximize the pump head and efficiency and minimize the fluctuation degree of them under varying working conditions at the same time.Fourthly,using response surface model,a surrogate model was established between the optimization objectives and control variables of the shape of the impeller.Finally,based on a multi-objective genetic optimization algorithm,a two-loop iterative optimization process was designed to find the optimal solution with good robustness.Comparing the original and optimized pump,it is found that the internal flow field of the optimized pump has been improved under various operating conditions,the hydraulic performance has been improved consequently,and the range of high efficient zone has also been widened.Besides,with the changing of working conditions,the change trend of the hydraulic performance of the optimized pump becomes gentler,the flow field distribution is more uniform,and the influence degree of the varia-tion of working conditions decreases,and the operating stability of the pump is improved.It is concluded that the robust optimization method proposed in this paper is a reasonable way to optimize the mixed-flow pump,and provides references for optimization problems of other fluid machinery.
文摘This study presents a robust design method for autonomous photovoltaic (PV)-wind hybrid power systems to obtain an optimum system configuration insensitive to design variable variations. This issue has been formulated as a constraint multi-objective optimization problem, which is solved by a multi-objective genetic algorithm, NSGA-II. Monte Carlo Simulation (MCS) method, combined with Latin Hypercube Sampling (LHS), is applied to evaluate the stochastic system performance. The potential of the proposed method has been demonstrated by a conceptual system design. A comparative study between the proposed robust method and the deterministic method presented in literature has been conducted. The results indicate that the proposed method can find a large mount of Pareto optimal system configurations with better compromising performance than the deterministic method. The trade-off information may be derived by a systematical comparison of these configurations. The proposed robust design method should be useful for hybrid power systems that require both optimality and robustness.
文摘Design and optimization of electrical drive systems often involve simultaneous consideration of multiple objectives that usually contradict to each other and multiple disciplines that normally coupled to each other.This paper aims to present efficient system-level multiobjective optimization methods for the multidisciplinary design optimization of electrical drive systems.From the perspective of quality control,deterministic and robust approaches will be investigated for the development of the optimization models for the proposed methods.Meanwhile,two approximation methods,Kriging model and Taylor expansion are employed to decrease the computation/simulation cost.To illustrate the advantages of the proposed methods,a drive system with a permanent magnet synchronous motor driven by a field oriented control system is investigated.Deterministic and robust Pareto optimal solutions are presented and compared in terms of several steady-state and dynamic performances(like average torque and speed overshoot)of the drive system.The robust multiobjective optimization method can produce optimal Pareto solutions with high manufacturing quality for the drive system.
基金science and technology projects of Jiangxi Provincial Education Department(GJJ161186).
文摘A robust optimization design method is proposed to investigate the influence of the hook position on the vertical vibration(bending)of an automobile exhaust system.A block diagram for the robustness analysis of the exhaust system is initially constructed from the major affecting factors.Secondly,the second-order inertia force is set as the vibration excitation source of the exhaust system and the displacement of four hooks of the exhaust system is selected as the variable factor.Then tests are carried out to investigate the resulting vertical bending considering four influencing factors and three levels of analysis.Finally,a variance analysis of the vertical bending is performed.The present study provides a set of guidelines to control the key factors affecting the vibration of vehicle exhaust systems while proposing an effective method to reduce vehicle vibration and improve noise analysis。
基金Supported by National High-Tech. R&D Program for CIMS of China (2002AA413520) National Fundamental Research Program (973) of China (2003CB716207).
文摘The problem of robust design is treated as a multi-objective optimization issue in which the performance mean and variation are optimized and minimized respectively, while maintaining the feasibility of design constraints under uncertainty. To effectively address this issue in robust design, this paper presents a novel robust optimization approach which integrates multi-objective optimization concepts with Taguchi’s crossed arrays techniques. In this approach, Pareto-optimal robust design solution sets are obtained with the aid of design of experiment set-ups, which utilize the results of Analysis of Variance to quantify relative dominance and significance of design variables. A beam design problem is used to illustrate the effectiveness of the proposed approach.