Next-generation cellular networks are expected to provide users with innovative gigabits and terabits per second speeds and achieve ultra-high reliability,availability,and ultra-low latency.The requirements of such ne...Next-generation cellular networks are expected to provide users with innovative gigabits and terabits per second speeds and achieve ultra-high reliability,availability,and ultra-low latency.The requirements of such networks are the main challenges that can be handled using a range of recent technologies,including multi-access edge computing(MEC),artificial intelligence(AI),millimeterwave communications(mmWave),and software-defined networking.Many aspects and design challenges associated with the MEC-based 5G/6G networks should be solved to ensure the required quality of service(QoS).This article considers developing a complex MEC structure for fifth and sixth-generation(5G/6G)cellular networks.Furthermore,we propose a seamless migration technique for complex edge computing structures.The developed migration scheme enables services to adapt to the required load on the radio channels.The proposed algorithm is analyzed for various use cases,and a test bench has been developed to emulate the operator’s infrastructure.The obtained results are introduced and discussed.展开更多
The rapid proliferation of connected IoT(Internet of Things)devices,along with the increasing demand for 5G mobile networks and ubiquitous high-speed connectivity,poses significant challenges in the telecommunications...The rapid proliferation of connected IoT(Internet of Things)devices,along with the increasing demand for 5G mobile networks and ubiquitous high-speed connectivity,poses significant challenges in the telecommunications sector.To address these challenges,a comprehensive understanding of the integration of 5G/6G networks and LEO(Low Earth Orbit)satellite networks is required,forming the concept of“integrated networks”.Integration offers valuable advantages,including service continuity,wide-area coverage,and support for critical communications and emerging applications.This paper provides a high-level overview of the convergence of 5G/6G,LEO satellites,and IoT devices,shedding light on the technological challenges and standardization issues associated with the transition from 5G to 6G networks using NTNs(Non-Terrestrial Networks)based on LEO satellites.Furthermore,this research delves into the emerging social issues,potential possibilities,and the paradigm shift from the IoT to the IoI(Internet of Intelligence),which is poised to revolutionize the landscape of 6G wireless networks.By highlighting the interconnectedness of 5G/6G networks,LEO satellite systems,and IoT devices,it underscores the importance of leveraging these converging technologies to address environmental protection and achieve the United Nations SDGs(Sustainable Development Goals).In addition to providing valuable insights for readers seeking to comprehend the convergence of 5G/6G networks,LEO satellite systems,and IoT devices,this paper represents the outcomes of a comprehensive analysis conducted at the ECSTAR(Excellence Center of Space Technology and Research).Through an examination of technological challenges and advancements,it identifies future research directions and potential avenues for exploration at ECSTAR,thereby contributing to a broader understanding of integrated networks and their profound impact on future telecommunications systems.This research serves as a significant resource for advancing the knowledge and discourse surrounding the linkages between the convergence of these technologies,environmental protection,and the pursuit of the SDGs.展开更多
The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of user...The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of users and devices.Researchers in academia and industry are focusing on technological advancements to achieve highspeed transmission,cell planning,and latency reduction to facilitate emerging applications such as virtual reality,the metaverse,smart cities,smart health,and autonomous vehicles.NextG continuously improves its network functionality to support these applications.Multiple input multiple output(MIMO)technology offers spectral efficiency,dependability,and overall performance in conjunctionwithNextG.This article proposes a secure channel estimation technique in MIMO topology using a norm-estimation model to provide comprehensive insights into protecting NextG network components against adversarial attacks.The technique aims to create long-lasting and secure NextG networks using this extended approach.The viability of MIMO applications and modern AI-driven methodologies to combat cybersecurity threats are explored in this research.Moreover,the proposed model demonstrates high performance in terms of reliability and accuracy,with a 20%reduction in the MalOut-RealOut-Diff metric compared to existing state-of-the-art techniques.展开更多
The explosive growth of data traffic and heterogeneous service requirements of 5G networks—covering Enhanced Mobile Broadband(eMBB),Ultra-Reliable Low Latency Communication(URLLC),and Massive Machine Type Communicati...The explosive growth of data traffic and heterogeneous service requirements of 5G networks—covering Enhanced Mobile Broadband(eMBB),Ultra-Reliable Low Latency Communication(URLLC),and Massive Machine Type Communication(mMTC)—present tremendous challenges to conventional methods of bandwidth allocation.A new deep reinforcement learning-based(DRL-based)bandwidth allocation system for real-time,dynamic management of 5G radio access networks is proposed in this paper.Unlike rule-based and static strategies,the proposed system dynamically updates itself according to shifting network conditions such as traffic load and channel conditions to maximize the achievable throughput,fairness,and compliance with QoS requirements.By using extensive simulations mimicking real-world 5G scenarios,the proposed DRL model outperforms current baselines like Long Short-Term Memory(LSTM),linear regression,round-robin,and greedy algorithms.It attains 90%–95%of the maximum theoretical achievable throughput and nearly twice the conventional equal allocation.It is also shown to react well under delay and reliability constraints,outperforming round-robin(hindered by excessive delay and packet loss)and proving to be more efficient than greedy approaches.In conclusion,the efficiency of DRL in optimizing the allocation of bandwidth is highlighted,and its potential to realize self-optimizing,Artificial Intelligence-assisted(AI-assisted)resource management in 5G as well as upcoming 6G networks is revealed.展开更多
The advent of sixth-generation(6G)networks introduces unprecedented challenges in achieving seamless connectivity,ultra-low latency,and efficient resource management in highly dynamic environments.Although fifth-gener...The advent of sixth-generation(6G)networks introduces unprecedented challenges in achieving seamless connectivity,ultra-low latency,and efficient resource management in highly dynamic environments.Although fifth-generation(5G)networks transformed mobile broadband and machine-type communications at massive scales,their properties of scaling,interference management,and latency remain a limitation in dense high mobility settings.To overcome these limitations,artificial intelligence(AI)and unmanned aerial vehicles(UAVs)have emerged as potential solutions to develop versatile,dynamic,and energy-efficient communication systems.The study proposes an AI-based UAV architecture that utilizes cooperative reinforcement learning(CoRL)to manage an autonomous network.The UAVs collaborate by sharing local observations and real-time state exchanges to optimize user connectivity,movement directions,allocate power,and resource distribution.Unlike conventional centralized or autonomous methods,CoRL involves joint state sharing and conflict-sensitive reward shaping,which ensures fair coverage,less interference,and enhanced adaptability in a dynamic urban environment.Simulations conducted in smart city scenarios with 10 UAVs and 50 ground users demonstrate that the proposed CoRL-based UAV system increases user coverage by up to 10%,achieves convergence 40%faster,and reduces latency and energy consumption by 30%compared with centralized and decentralized baselines.Furthermore,the distributed nature of the algorithm ensures scalability and flexibility,making it well-suited for future large-scale 6G deployments.The results highlighted that AI-enabled UAV systems enhance connectivity,support ultra-reliable low-latency communications(URLLC),and improve 6G network efficiency.Future work will extend the framework with adaptive modulation,beamforming-aware positioning,and real-world testbed deployment.展开更多
Smart edge computing(SEC)is a novel paradigm for computing that could transfer cloud-based applications to the edge network,supporting computation-intensive services like face detection and natural language processing...Smart edge computing(SEC)is a novel paradigm for computing that could transfer cloud-based applications to the edge network,supporting computation-intensive services like face detection and natural language processing.A core feature of mobile edge computing,SEC improves user experience and device performance by offloading local activities to edge processors.In this framework,blockchain technology is utilized to ensure secure and trustworthy communication between edge devices and servers,protecting against potential security threats.Additionally,Deep Learning algorithms are employed to analyze resource availability and optimize computation offloading decisions dynamically.IoT applications that require significant resources can benefit from SEC,which has better coverage.Although access is constantly changing and network devices have heterogeneous resources,it is not easy to create consistent,dependable,and instantaneous communication between edge devices and their processors,specifically in 5G Heterogeneous Network(HN)situations.Thus,an Intelligent Management of Resources for Smart Edge Computing(IMRSEC)framework,which combines blockchain,edge computing,and Artificial Intelligence(AI)into 5G HNs,has been proposed in this paper.As a result,a unique dual schedule deep reinforcement learning(DS-DRL)technique has been developed,consisting of a rapid schedule learning process and a slow schedule learning process.The primary objective is to minimize overall unloading latency and system resource usage by optimizing computation offloading,resource allocation,and application caching.Simulation results demonstrate that the DS-DRL approach reduces task execution time by 32%,validating the method’s effectiveness within the IMRSEC framework.展开更多
The Fifth Generation of Mobile Communications for Railways(5G-R)brings significant opportunities for the rail industry.However,alongside the potential and benefits of the railway 5G network are complex security challe...The Fifth Generation of Mobile Communications for Railways(5G-R)brings significant opportunities for the rail industry.However,alongside the potential and benefits of the railway 5G network are complex security challenges.Ensuring the security and reliability of railway 5G networks is therefore essential.This paper presents a detailed examination of security assessment techniques for railway 5G networks,focusing on addressing the unique security challenges in this field.In this paper,various security requirements in railway 5G networks are analyzed,and specific processes and methods for conducting comprehensive security risk assessments are presented.This study provides a framework for securing railway 5G network development and ensuring its long-term sustainability.展开更多
基金This work was supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R308),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Next-generation cellular networks are expected to provide users with innovative gigabits and terabits per second speeds and achieve ultra-high reliability,availability,and ultra-low latency.The requirements of such networks are the main challenges that can be handled using a range of recent technologies,including multi-access edge computing(MEC),artificial intelligence(AI),millimeterwave communications(mmWave),and software-defined networking.Many aspects and design challenges associated with the MEC-based 5G/6G networks should be solved to ensure the required quality of service(QoS).This article considers developing a complex MEC structure for fifth and sixth-generation(5G/6G)cellular networks.Furthermore,we propose a seamless migration technique for complex edge computing structures.The developed migration scheme enables services to adapt to the required load on the radio channels.The proposed algorithm is analyzed for various use cases,and a test bench has been developed to emulate the operator’s infrastructure.The obtained results are introduced and discussed.
文摘The rapid proliferation of connected IoT(Internet of Things)devices,along with the increasing demand for 5G mobile networks and ubiquitous high-speed connectivity,poses significant challenges in the telecommunications sector.To address these challenges,a comprehensive understanding of the integration of 5G/6G networks and LEO(Low Earth Orbit)satellite networks is required,forming the concept of“integrated networks”.Integration offers valuable advantages,including service continuity,wide-area coverage,and support for critical communications and emerging applications.This paper provides a high-level overview of the convergence of 5G/6G,LEO satellites,and IoT devices,shedding light on the technological challenges and standardization issues associated with the transition from 5G to 6G networks using NTNs(Non-Terrestrial Networks)based on LEO satellites.Furthermore,this research delves into the emerging social issues,potential possibilities,and the paradigm shift from the IoT to the IoI(Internet of Intelligence),which is poised to revolutionize the landscape of 6G wireless networks.By highlighting the interconnectedness of 5G/6G networks,LEO satellite systems,and IoT devices,it underscores the importance of leveraging these converging technologies to address environmental protection and achieve the United Nations SDGs(Sustainable Development Goals).In addition to providing valuable insights for readers seeking to comprehend the convergence of 5G/6G networks,LEO satellite systems,and IoT devices,this paper represents the outcomes of a comprehensive analysis conducted at the ECSTAR(Excellence Center of Space Technology and Research).Through an examination of technological challenges and advancements,it identifies future research directions and potential avenues for exploration at ECSTAR,thereby contributing to a broader understanding of integrated networks and their profound impact on future telecommunications systems.This research serves as a significant resource for advancing the knowledge and discourse surrounding the linkages between the convergence of these technologies,environmental protection,and the pursuit of the SDGs.
基金funding from King Saud University through Researchers Supporting Project number(RSP2024R387),King Saud University,Riyadh,Saudi Arabia.
文摘The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of users and devices.Researchers in academia and industry are focusing on technological advancements to achieve highspeed transmission,cell planning,and latency reduction to facilitate emerging applications such as virtual reality,the metaverse,smart cities,smart health,and autonomous vehicles.NextG continuously improves its network functionality to support these applications.Multiple input multiple output(MIMO)technology offers spectral efficiency,dependability,and overall performance in conjunctionwithNextG.This article proposes a secure channel estimation technique in MIMO topology using a norm-estimation model to provide comprehensive insights into protecting NextG network components against adversarial attacks.The technique aims to create long-lasting and secure NextG networks using this extended approach.The viability of MIMO applications and modern AI-driven methodologies to combat cybersecurity threats are explored in this research.Moreover,the proposed model demonstrates high performance in terms of reliability and accuracy,with a 20%reduction in the MalOut-RealOut-Diff metric compared to existing state-of-the-art techniques.
文摘The explosive growth of data traffic and heterogeneous service requirements of 5G networks—covering Enhanced Mobile Broadband(eMBB),Ultra-Reliable Low Latency Communication(URLLC),and Massive Machine Type Communication(mMTC)—present tremendous challenges to conventional methods of bandwidth allocation.A new deep reinforcement learning-based(DRL-based)bandwidth allocation system for real-time,dynamic management of 5G radio access networks is proposed in this paper.Unlike rule-based and static strategies,the proposed system dynamically updates itself according to shifting network conditions such as traffic load and channel conditions to maximize the achievable throughput,fairness,and compliance with QoS requirements.By using extensive simulations mimicking real-world 5G scenarios,the proposed DRL model outperforms current baselines like Long Short-Term Memory(LSTM),linear regression,round-robin,and greedy algorithms.It attains 90%–95%of the maximum theoretical achievable throughput and nearly twice the conventional equal allocation.It is also shown to react well under delay and reliability constraints,outperforming round-robin(hindered by excessive delay and packet loss)and proving to be more efficient than greedy approaches.In conclusion,the efficiency of DRL in optimizing the allocation of bandwidth is highlighted,and its potential to realize self-optimizing,Artificial Intelligence-assisted(AI-assisted)resource management in 5G as well as upcoming 6G networks is revealed.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(RS-2025-00559546)supported by the IITP(Institute of Information&Coummunications Technology Planning&Evaluation)-ITRC(Information Technology Research Center)grant funded by the Korea government(Ministry of Science and ICT)(IITP-2025-RS-2023-00259004).
文摘The advent of sixth-generation(6G)networks introduces unprecedented challenges in achieving seamless connectivity,ultra-low latency,and efficient resource management in highly dynamic environments.Although fifth-generation(5G)networks transformed mobile broadband and machine-type communications at massive scales,their properties of scaling,interference management,and latency remain a limitation in dense high mobility settings.To overcome these limitations,artificial intelligence(AI)and unmanned aerial vehicles(UAVs)have emerged as potential solutions to develop versatile,dynamic,and energy-efficient communication systems.The study proposes an AI-based UAV architecture that utilizes cooperative reinforcement learning(CoRL)to manage an autonomous network.The UAVs collaborate by sharing local observations and real-time state exchanges to optimize user connectivity,movement directions,allocate power,and resource distribution.Unlike conventional centralized or autonomous methods,CoRL involves joint state sharing and conflict-sensitive reward shaping,which ensures fair coverage,less interference,and enhanced adaptability in a dynamic urban environment.Simulations conducted in smart city scenarios with 10 UAVs and 50 ground users demonstrate that the proposed CoRL-based UAV system increases user coverage by up to 10%,achieves convergence 40%faster,and reduces latency and energy consumption by 30%compared with centralized and decentralized baselines.Furthermore,the distributed nature of the algorithm ensures scalability and flexibility,making it well-suited for future large-scale 6G deployments.The results highlighted that AI-enabled UAV systems enhance connectivity,support ultra-reliable low-latency communications(URLLC),and improve 6G network efficiency.Future work will extend the framework with adaptive modulation,beamforming-aware positioning,and real-world testbed deployment.
文摘Smart edge computing(SEC)is a novel paradigm for computing that could transfer cloud-based applications to the edge network,supporting computation-intensive services like face detection and natural language processing.A core feature of mobile edge computing,SEC improves user experience and device performance by offloading local activities to edge processors.In this framework,blockchain technology is utilized to ensure secure and trustworthy communication between edge devices and servers,protecting against potential security threats.Additionally,Deep Learning algorithms are employed to analyze resource availability and optimize computation offloading decisions dynamically.IoT applications that require significant resources can benefit from SEC,which has better coverage.Although access is constantly changing and network devices have heterogeneous resources,it is not easy to create consistent,dependable,and instantaneous communication between edge devices and their processors,specifically in 5G Heterogeneous Network(HN)situations.Thus,an Intelligent Management of Resources for Smart Edge Computing(IMRSEC)framework,which combines blockchain,edge computing,and Artificial Intelligence(AI)into 5G HNs,has been proposed in this paper.As a result,a unique dual schedule deep reinforcement learning(DS-DRL)technique has been developed,consisting of a rapid schedule learning process and a slow schedule learning process.The primary objective is to minimize overall unloading latency and system resource usage by optimizing computation offloading,resource allocation,and application caching.Simulation results demonstrate that the DS-DRL approach reduces task execution time by 32%,validating the method’s effectiveness within the IMRSEC framework.
基金supported in part by the Fundamental Research Funds for the Central Universities under Grant No.2025JBXT010in part by NSFC under Grant No.62171021,in part by the Project of China State Railway Group under Grant No.N2024B004in part by ZTE IndustryUniversityInstitute Cooperation Funds under Grant No.l23L00010.
文摘The Fifth Generation of Mobile Communications for Railways(5G-R)brings significant opportunities for the rail industry.However,alongside the potential and benefits of the railway 5G network are complex security challenges.Ensuring the security and reliability of railway 5G networks is therefore essential.This paper presents a detailed examination of security assessment techniques for railway 5G networks,focusing on addressing the unique security challenges in this field.In this paper,various security requirements in railway 5G networks are analyzed,and specific processes and methods for conducting comprehensive security risk assessments are presented.This study provides a framework for securing railway 5G network development and ensuring its long-term sustainability.