MnxNi0.5-xZn0.5Fe2O4 nanorods were successfully synthesized by the thermal treatment of rod-like precursors that were fabricated by the co-precipitation of Mn2+, Ni2+, and Fe2+ in the lye. The phase, morphology, an...MnxNi0.5-xZn0.5Fe2O4 nanorods were successfully synthesized by the thermal treatment of rod-like precursors that were fabricated by the co-precipitation of Mn2+, Ni2+, and Fe2+ in the lye. The phase, morphology, and particle diameter were examined by the X-ray diffraction and transmission electron microscopy. The magnetic properties of the samples were studied using a vibrating sample magnetometer. nanorods with a diameter of 35 nm and an The results indicated that pure Ni0.5-xZn0.5Fe2O4 aspect ratio of 15 were prepared. It was found that the diametei of the MnxNi0.5-xZn0.5Fe2O4(0≤x≤0.5) samples increased, the length and the aspect .ratio decreased, with an increase in x value. When x=0.5, the diameter and the aspect ratio of the sample reached up to 50 nm and 7-8, respectively. The coercivity of the samples first increased and then decreased with the increase in the x value. The coercivity of the samples again increased when the x value was higher than 0.4. When x=0.5, the coercivity of the MnxNi0.5-xZn0.5Fe2O4 sample reached the maximal value (134.3 Oe) at the calcination temperature of 600 ℃. The saturation magnetization of the samples first increased and then. decreased with the increase in the x value. When x=0.2, the saturation magnetizat:ion of the sample reached the maximal value (68.5 emu/g) at the calcination temperature of 800 ℃.展开更多
A novel coordination polymer, [Fe(C 5H 4NCOO) 2] n, was synthesized by hydrothermal reaction and characterized by elemental analysis as well as IR spectroscopy. The crystal structure (with a novel 3-D network) of this...A novel coordination polymer, [Fe(C 5H 4NCOO) 2] n, was synthesized by hydrothermal reaction and characterized by elemental analysis as well as IR spectroscopy. The crystal structure (with a novel 3-D network) of this compound belongs to monoclinic, space group P2 1/n, a=0.49544(1) nm, b=1.32443(2) nm, c=1.04983(1) nm, β=101.586(1)°. The diffuse reflectance spectra (200~2500 nm) showed that the polymer had strong absorbance in 375~563 nm (E g≈2.5 eV) region and weak absorbance from 720 to 2500 nm (near infrared spectra).展开更多
文摘MnxNi0.5-xZn0.5Fe2O4 nanorods were successfully synthesized by the thermal treatment of rod-like precursors that were fabricated by the co-precipitation of Mn2+, Ni2+, and Fe2+ in the lye. The phase, morphology, and particle diameter were examined by the X-ray diffraction and transmission electron microscopy. The magnetic properties of the samples were studied using a vibrating sample magnetometer. nanorods with a diameter of 35 nm and an The results indicated that pure Ni0.5-xZn0.5Fe2O4 aspect ratio of 15 were prepared. It was found that the diametei of the MnxNi0.5-xZn0.5Fe2O4(0≤x≤0.5) samples increased, the length and the aspect .ratio decreased, with an increase in x value. When x=0.5, the diameter and the aspect ratio of the sample reached up to 50 nm and 7-8, respectively. The coercivity of the samples first increased and then decreased with the increase in the x value. The coercivity of the samples again increased when the x value was higher than 0.4. When x=0.5, the coercivity of the MnxNi0.5-xZn0.5Fe2O4 sample reached the maximal value (134.3 Oe) at the calcination temperature of 600 ℃. The saturation magnetization of the samples first increased and then. decreased with the increase in the x value. When x=0.2, the saturation magnetizat:ion of the sample reached the maximal value (68.5 emu/g) at the calcination temperature of 800 ℃.
文摘A novel coordination polymer, [Fe(C 5H 4NCOO) 2] n, was synthesized by hydrothermal reaction and characterized by elemental analysis as well as IR spectroscopy. The crystal structure (with a novel 3-D network) of this compound belongs to monoclinic, space group P2 1/n, a=0.49544(1) nm, b=1.32443(2) nm, c=1.04983(1) nm, β=101.586(1)°. The diffuse reflectance spectra (200~2500 nm) showed that the polymer had strong absorbance in 375~563 nm (E g≈2.5 eV) region and weak absorbance from 720 to 2500 nm (near infrared spectra).