期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Lower bounds for eigenvalues of the Dirac-Witten operator 被引量:1
1
作者 CHEN YongFa Institute of Mathematics,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China 《Science China Mathematics》 SCIE 2009年第11期2459-2468,共10页
We get optimal lower bounds for the eigenvalues of the Dirac-Witten operator of compact(with or without boundary) spacelike hypersurfaces of Lorentian manifold satisfying certain conditions,just in terms of the mean c... We get optimal lower bounds for the eigenvalues of the Dirac-Witten operator of compact(with or without boundary) spacelike hypersurfaces of Lorentian manifold satisfying certain conditions,just in terms of the mean curvature and the scalar curvature and the spinor energy-momentum tensor. In the limiting case,the spacelike hypersurface is either maximal and Einstein manifold with positive scalar curvature or Ricci-flat manifold with nonzero constant mean curvature. 展开更多
关键词 Dirac-Witten operator EIGENVALUE mean curvature scalar curvature 53C27 53c40 53C80 83C60
原文传递
Harmonic maps between compact Hermitian manifolds 被引量:1
2
作者 LIU KeFeng YANG XiaoKui 《Science China Mathematics》 SCIE 2008年第12期2149-2160,共12页
In this paper, we generalize the Bochner-Kodaira formulas to the case of Hermitian complex (possibly non-holomorphic) vector bundles over compact Hermitian (possibly non-K?hler) manifolds. As applications, we get the ... In this paper, we generalize the Bochner-Kodaira formulas to the case of Hermitian complex (possibly non-holomorphic) vector bundles over compact Hermitian (possibly non-K?hler) manifolds. As applications, we get the complex analyticity of harmonic maps between compact Hermitian manifolds. 展开更多
关键词 Bochner-Kodaira formulas harmonic maps strongly negative curvature 53c40
原文传递
L-harmonic functions with polynomial growth of a fixed rate
3
作者 ZHOU ChaoHui CHEN ZhiHua 《Science China Mathematics》 SCIE 2009年第12期2855-2862,共8页
Yau made the following conjecture:For a complete noncompact manifold with nonnegative Ricci curvature the space of harmonic functions with polynomial growth of a fixed rate is finite dimensional.we extend the result o... Yau made the following conjecture:For a complete noncompact manifold with nonnegative Ricci curvature the space of harmonic functions with polynomial growth of a fixed rate is finite dimensional.we extend the result on the Laplace operator to that on the symmetric diffusion operator,and prove the space of L-harmonic functions with polynomial growth of a fixed rate is finitedimensional,when m-dimensional Bakery-Emery Ricci curvature of the symmetric diffusion operator on the complete noncompact Riemannian manifold is nonnegative. 展开更多
关键词 L-harmonic function symmetric diffusion operator Bakery-Emery Ricci curvature 53c40
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部