期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
7A52/7A01/7A62铝合金叠层复合厚板界面剪切断裂机制分析
1
作者 董浩 张思平 +3 位作者 吴好文 郑文瑄 高文 何川 《轻合金加工技术》 2025年第1期46-50,63,共6页
采用万能拉伸试验机和扫描电子显微镜观测合格以及含有界面缺陷的7A52/7A01/7A62铝合金叠层复合厚板结合层剪切断裂路径及特征。结果显示,界面缺陷的存在并未对复合板剪切强度造成显著影响。整个断口可以分为光亮带、剪裂带、最终断裂... 采用万能拉伸试验机和扫描电子显微镜观测合格以及含有界面缺陷的7A52/7A01/7A62铝合金叠层复合厚板结合层剪切断裂路径及特征。结果显示,界面缺陷的存在并未对复合板剪切强度造成显著影响。整个断口可以分为光亮带、剪裂带、最终断裂区三个部分。光亮带起源于试样表面,剪裂带为韧窝状组织,最终断裂区与剪裂带有明显界限,且呈一定的夹角。有缺陷的剪切断口裂纹扩展区还存在表面平整的平台状凸起。剪切断口路径经过界面强度最薄弱的地方,缺陷会导致7A52/7A01/7A62铝合金叠层复合厚板剪切断裂的扩展路径出现差异。无缺陷样品断裂路径主要位于7A01铝合金内部,在最终断裂区裂纹会向7A62铝合金倾斜。有缺陷样品断裂路径除主要经过7A01铝合金内部外,还会经过界面未焊合缺陷处。 展开更多
关键词 7A52/7A01/7A62铝合金叠层复合厚板 剪切断裂 断口分析 微观组织
在线阅读 下载PDF
The fundamental theory of abstract majorization inequalities 被引量:1
2
作者 YANG DingHua College of Mathematics and Software Sciences, Sichuan Normal University, Chengdu 610066, ChinaAbstract 《Science China Mathematics》 SCIE 2009年第10期2287-2308,共22页
Using the axiomatic method, abstract concepts such as abstract mean, abstract convex function and abstract majorization are proposed. They are the generalizations of concepts of mean, convex function and majorization,... Using the axiomatic method, abstract concepts such as abstract mean, abstract convex function and abstract majorization are proposed. They are the generalizations of concepts of mean, convex function and majorization, respectively. Through the logical deduction, the fundamental theorems about abstract majorization inequalities are established as follows: for arbitrary abstract mean Σ and $ \Sigma ' $ and abstract ∑ ? $ \Sigma ' $ strict convex function f(x) on the interval I, if x i , y i ∈ I (i = 1, 2,..., n) satisfy that $ (x_1 ,x_2 , \ldots ,x_n ) \prec _n^\Sigma (y_1 ,y_2 , \ldots ,y_n ) $ then $ \Sigma ' $ {f(x 1), f(x 2),..., f(x n )} ? $ \Sigma ' $ {f(y 1), f(y 2),..., f(y n )}. This class of inequalities extends and generalizes the fundamental theorem of majorization inequalities. Moreover, concepts such as abstract vector mean are proposed, the fundamental theorems about abstract majorization inequalities are generalized to n-dimensional vector space. The fundamental theorem of majorization inequalities about the abstract vector mean are established as follows: for arbitrary symmetrical convex set $ \mathcal{S} \subset \mathbb{R}^n $ , and n-variable abstract symmetrical $ \overline \Sigma $ ? $ \Sigma ' $ strict convex function $ \phi (\bar x) $ on $ \mathcal{S} $ , if $ \bar x,\bar y \in \mathcal{S} $ , satisfy $ \bar x \prec _n^\Sigma \bar y $ , then $ \phi (\bar x) \geqslant \phi (\bar y) $ ; if vector group $ \bar x_i ,\bar y_i \in \mathcal{S}(i = 1,2, \ldots ,m) $ satisfy $ \{ \bar x_1 ,\bar x_2 , \ldots ,\bar x_m \} \prec _n^{\bar \Sigma } \{ \bar y_1 ,\bar y_2 , \ldots ,\bar y_m \} $ , then $ \Sigma '\{ \phi (\bar x_1 ),\phi (\bar x_2 ), \ldots ,\phi (\bar x_m )\} \geqslant \Sigma '\{ \phi (\bar y_1 ),\phi (\bar y_2 ), \ldots ,\phi (\bar y_m )\} $ . 展开更多
关键词 abstract mean abstract convex function abstract majorization abstract majorization inequality 26A51 26B25 39B62 52a01 60E15
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部