Amorphous bimetallic borides,as a new generation of catalytic nanomaterials with modifiable electronic properties,are of great importance in the design of high-efficiency catalysts for NaBH_(4) hydrolysis.This study s...Amorphous bimetallic borides,as a new generation of catalytic nanomaterials with modifiable electronic properties,are of great importance in the design of high-efficiency catalysts for NaBH_(4) hydrolysis.This study synthesizes an amorphous Co_(3)B-Mo_(2)B_(5) catalyst using a self-sacrificial template strategy and NaBH_(4) reduction for both NaBH_(4) hydrolysis and the reduction of 4-nitrophenol.The catalyst delivers an impressive hydrogen generation rate of 7690.5 mL min^(-1) g^(-1) at 25℃,coupled with a rapid reaction rate of 0.701 min^(-1) in the reduction of 4-nitrophenol.The enhanced catalytic performance is attributed to the unique amorphous structure and the electron rearrangement between Co_(3)B and Mo_(2)B_(5).Experimental and theoretical analyses suggest electron transfer from Co_(3)B to the Mo_(2)B_(5),with the electron-deficient Co_(3)B site favoring BH_(4)^(-) adsorption,while the electron-rich Mo_(2)B_(5) site favoring H_(2)O adsorption,Furthermore,Co_(3)B-Mo_(2)B_(5) demonstrated potential for energy applications,delivering a power output of 0.3 V in a hydrogen-air fuel cell.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52363028,21965005)Natural Science Foundation of Guangxi(Nos.2021GXNSFAA076001,2018GXNSFAA294077)Guangxi Technology Base and Talent Subject(Nos.GUIKE AD23023004,GUIKE AD20297039)。
文摘Amorphous bimetallic borides,as a new generation of catalytic nanomaterials with modifiable electronic properties,are of great importance in the design of high-efficiency catalysts for NaBH_(4) hydrolysis.This study synthesizes an amorphous Co_(3)B-Mo_(2)B_(5) catalyst using a self-sacrificial template strategy and NaBH_(4) reduction for both NaBH_(4) hydrolysis and the reduction of 4-nitrophenol.The catalyst delivers an impressive hydrogen generation rate of 7690.5 mL min^(-1) g^(-1) at 25℃,coupled with a rapid reaction rate of 0.701 min^(-1) in the reduction of 4-nitrophenol.The enhanced catalytic performance is attributed to the unique amorphous structure and the electron rearrangement between Co_(3)B and Mo_(2)B_(5).Experimental and theoretical analyses suggest electron transfer from Co_(3)B to the Mo_(2)B_(5),with the electron-deficient Co_(3)B site favoring BH_(4)^(-) adsorption,while the electron-rich Mo_(2)B_(5) site favoring H_(2)O adsorption,Furthermore,Co_(3)B-Mo_(2)B_(5) demonstrated potential for energy applications,delivering a power output of 0.3 V in a hydrogen-air fuel cell.