An edge e of a k-connected graph G is said to be a removable edge if G O e is still k-connected, where G e denotes the graph obtained from G by deleting e to get G - e, and for any end vertex of e with degree k - 1 i...An edge e of a k-connected graph G is said to be a removable edge if G O e is still k-connected, where G e denotes the graph obtained from G by deleting e to get G - e, and for any end vertex of e with degree k - 1 in G- e, say x, delete x, and then add edges between any pair of non-adjacent vertices in NG-e (x). The existence of removable edges of k-connected graphs and some properties of 3-connected and 4-connected graphs have been investigated [1, 11, 14, 15]. In the present paper, we investigate some properties of 5-connected graphs and study the distribution of removable edges on a cycle and a spanning tree in a 5- connected graph. Based on the properties, we proved that for a 5-connected graph G of order at least 10, if the edge-vertex-atom of G contains at least three vertices, then G has at least (3│G│ + 2)/2 removable edges.展开更多
A nowhere-zero k-flow on a graph G=(V(G),E(G))is a pair(D,f),where D is an orientation on E(G)and f:E(G)→{±1,±2,,±(k-1)}is a function such that the total outflow equals to the total inflow at each vert...A nowhere-zero k-flow on a graph G=(V(G),E(G))is a pair(D,f),where D is an orientation on E(G)and f:E(G)→{±1,±2,,±(k-1)}is a function such that the total outflow equals to the total inflow at each vertex.This concept was introduced by Tutte as an extension of face colorings,and Tutte in 1954 conjectured that every bridgeless graph admits a nowhere-zero 5-flow,known as the 5-Flow Conjecture.This conjecture is verified for some graph classes and remains unresolved as of today.In this paper,we show that every bridgeless graph of Euler genus at most 20 admits a nowhere-zero 5-flow,which improves several known results.展开更多
A subset S of V is called a k-connected dominating set if S is a dominating set and the induced subgraph S has at most k components.The k-connected domination number γck(G) of G is the minimum cardinality taken ove...A subset S of V is called a k-connected dominating set if S is a dominating set and the induced subgraph S has at most k components.The k-connected domination number γck(G) of G is the minimum cardinality taken over all minimal k-connected dominating sets of G.In this paper,we characterize trees and unicyclic graphs with equal connected domination and 2-connected domination numbers.展开更多
For a graph G, let be the chromatic number of G. It is well-known that holds for any graph G with clique number . For a hereditary graph class , whether there exists a function f such that holds for every has been wid...For a graph G, let be the chromatic number of G. It is well-known that holds for any graph G with clique number . For a hereditary graph class , whether there exists a function f such that holds for every has been widely studied. Moreover, the form of minimum such an f is also concerned. A result of Schiermeyer shows that every -free graph G with clique number has . Chudnovsky and Sivaraman proved that every -free with clique number graph is -colorable. In this paper, for any -free graph G with clique number , we prove that . The main methods in the proof are set partition and induction.展开更多
By leveraging the 5G enabled vehicular ad hoc network(5G-VANET), it is widely recognized that connected vehicles have the potentials to improve road safety, transportation intelligence and provide in-vehicle entertain...By leveraging the 5G enabled vehicular ad hoc network(5G-VANET), it is widely recognized that connected vehicles have the potentials to improve road safety, transportation intelligence and provide in-vehicle entertainment experience. However, many enabling applications in 5G-VANET rely on the efficient content sharing among mobile vehicles, which is a very challenging issue due to the extremely large data volume, rapid topology change, and unbalanced traffic. In this paper, we investigate content prefetching and distribution in 5G-VANET. We first introduce an edge computing based hierarchical architecture for efficient distribution of large-volume vehicular data. We then propose a multi-place multi-factor prefetching scheme to meet the rapid topology change and unbalanced traffic. The content requests of vehicles can be served by neighbors, which can improve the sharing efficiency and alleviate the burden of networks. Furthermore, we use a graph theory based approach to solve the content distribution by transforming it into a maximum weighted independent set problem. Finally, the proposed scheme is evaluated with a greedy transmission strategy to demonstrate its efficiency.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No.10831001)the Science-TechnologyFoundation for Young Scientists of Fujian Province (Grant No.2007F3070)
文摘An edge e of a k-connected graph G is said to be a removable edge if G O e is still k-connected, where G e denotes the graph obtained from G by deleting e to get G - e, and for any end vertex of e with degree k - 1 in G- e, say x, delete x, and then add edges between any pair of non-adjacent vertices in NG-e (x). The existence of removable edges of k-connected graphs and some properties of 3-connected and 4-connected graphs have been investigated [1, 11, 14, 15]. In the present paper, we investigate some properties of 5-connected graphs and study the distribution of removable edges on a cycle and a spanning tree in a 5- connected graph. Based on the properties, we proved that for a 5-connected graph G of order at least 10, if the edge-vertex-atom of G contains at least three vertices, then G has at least (3│G│ + 2)/2 removable edges.
文摘A nowhere-zero k-flow on a graph G=(V(G),E(G))is a pair(D,f),where D is an orientation on E(G)and f:E(G)→{±1,±2,,±(k-1)}is a function such that the total outflow equals to the total inflow at each vertex.This concept was introduced by Tutte as an extension of face colorings,and Tutte in 1954 conjectured that every bridgeless graph admits a nowhere-zero 5-flow,known as the 5-Flow Conjecture.This conjecture is verified for some graph classes and remains unresolved as of today.In this paper,we show that every bridgeless graph of Euler genus at most 20 admits a nowhere-zero 5-flow,which improves several known results.
文摘A subset S of V is called a k-connected dominating set if S is a dominating set and the induced subgraph S has at most k components.The k-connected domination number γck(G) of G is the minimum cardinality taken over all minimal k-connected dominating sets of G.In this paper,we characterize trees and unicyclic graphs with equal connected domination and 2-connected domination numbers.
文摘For a graph G, let be the chromatic number of G. It is well-known that holds for any graph G with clique number . For a hereditary graph class , whether there exists a function f such that holds for every has been widely studied. Moreover, the form of minimum such an f is also concerned. A result of Schiermeyer shows that every -free graph G with clique number has . Chudnovsky and Sivaraman proved that every -free with clique number graph is -colorable. In this paper, for any -free graph G with clique number , we prove that . The main methods in the proof are set partition and induction.
基金the support of National Science and Technology Major Project of the Ministry of Science and Technology of China under Grant No.2016ZX03001025003the Natural Science Foundation of Beijing under Grant No.4181002+2 种基金the Natural Science Foundation of China under Grant No.91638204BUPT Excellent Ph.D. Students Foundation under Grant No.CX2018210Natural Sciences and Engineering Research Council (NSERC),Canada
文摘By leveraging the 5G enabled vehicular ad hoc network(5G-VANET), it is widely recognized that connected vehicles have the potentials to improve road safety, transportation intelligence and provide in-vehicle entertainment experience. However, many enabling applications in 5G-VANET rely on the efficient content sharing among mobile vehicles, which is a very challenging issue due to the extremely large data volume, rapid topology change, and unbalanced traffic. In this paper, we investigate content prefetching and distribution in 5G-VANET. We first introduce an edge computing based hierarchical architecture for efficient distribution of large-volume vehicular data. We then propose a multi-place multi-factor prefetching scheme to meet the rapid topology change and unbalanced traffic. The content requests of vehicles can be served by neighbors, which can improve the sharing efficiency and alleviate the burden of networks. Furthermore, we use a graph theory based approach to solve the content distribution by transforming it into a maximum weighted independent set problem. Finally, the proposed scheme is evaluated with a greedy transmission strategy to demonstrate its efficiency.