The fracture and migration patterns of direct roofs play a critical role in excavation stability and mining pressure.However,current methods fail to capture the irregular three-dimensional(3D)behavior of these roofs.I...The fracture and migration patterns of direct roofs play a critical role in excavation stability and mining pressure.However,current methods fail to capture the irregular three-dimensional(3D)behavior of these roofs.In this study,the problem was solved by introducing an innovative 2.5-dimensional(2.5D)Voronoi numerical simulation method,dividing rock layers into 2.5D Voronoi blocks and developing cohesive element-based failure models,supported by a strain-softening HoekeBrown model.The method was applied to the 8311 working face in the Taishan Mine in China,and its accuracy was confirmed through physical experiments.The following conclusions were drawn.The first roof break typically followed an"O-X"pattern.The direct roof did not break randomly over time;instead,it followed three distinct scenarios:(1)A complete break of the direct roof occurred,followed by a sequential collapse(ScenarioⅠ).(2)Regional irregular stacking in one area was followed by sequential collapse in other zones(ScenarioⅡ).(3)The staged breakdown of the direct roof led to separate and sequential collapses on the left and right flanks(ScenarioⅢ).Scenario I was quite common during the 400 m advance of the working face and occurred five times.The fracture characteristics in Scenario I led to widespread pressure on the hydraulic supports in the middle of the working face.Finally,the direct roof from the working face towards the goaf area underwent phases of overhanging,hinging,and collapsing plates.After the first and periodic breaks,the basic roof formed stable hinged plate structures reinforced by overhanging plates and irregular accumulations of the direct roof.展开更多
Waves occurring in cold-rolled plates or sheets can be divided into longitudinal and transverse waves. Classical leveling theories merely solve the problem of longitudinal waves, while no well accepted method can be e...Waves occurring in cold-rolled plates or sheets can be divided into longitudinal and transverse waves. Classical leveling theories merely solve the problem of longitudinal waves, while no well accepted method can be employed for transverse waves. In order to investigate the essential deformation law of leveling for plates with transverse waves, a 2.5-dimensional (2.5- D) analytical approach was proposed. In this model, the plate was transversely divided into some strips with equal width; the strips are considered to be in the state of plane strain and each group of adjacent strips are assumed to be deformation compatible under stress. After calculation, the bending deformation of each strip and the leveling effect of overall plate were obtained by comprehensNe consideration of various strips along with the width. Bending of roller is a main approach to eliminate the transverse waves, which is widely accepted by the industry, but the essential effect of bending of roller on the deformation of plates and the calculation of bending of roller are unknown. According to the 2.5-D analytical model, it can be found that, for plates, it is neutral plane offsetting and middle plane elongation or contraction under inner stress that can effectively improve plate shape. Taking double side waves as an example, the appropriate values of bending of roller were obtained by the 2.5-D analytical model related to different initial unevenness, which was applicable to the current on-line adjusting of bending of roller in rolling industry.展开更多
We consider the Hyperverse as a collection of multiverses in 5-dimensional spacetime with gravitational constant G. Each multiverse in our simplified model is a bouquet of nested spherical Gogberashvili shells. If g&l...We consider the Hyperverse as a collection of multiverses in 5-dimensional spacetime with gravitational constant G. Each multiverse in our simplified model is a bouquet of nested spherical Gogberashvili shells. If g<sub>k</sub> is the gravitational constant of a thin shell S<sub>k</sub> and ε<sub>k</sub>, its thickness then G ~ ε<sub>k</sub>g<sub>k</sub>. The physical universe is supposed to be one of those shells inside the local nested bouquet called Local Multiverse. We relate this construction to Robinson-Trautman metrics describing expanding spacetimes with spherical gravitational waves. Supermassive astronomical black holes, located at cores of elliptic/spiral galaxies, are also conjecturally described within this theory. Our constructions are equally consistent with the modern theory of cosmological coupling.展开更多
We propose the generalization of Einstein’s special theory of relativity (STR). In our model, we use the (1 + 4)-dimensional space G, which is the extension of the (1 + 3)-dimensional Minkowski space M. As a fifth ad...We propose the generalization of Einstein’s special theory of relativity (STR). In our model, we use the (1 + 4)-dimensional space G, which is the extension of the (1 + 3)-dimensional Minkowski space M. As a fifth additional coordinate, the interval S is used. This value is constant under the usual Lorentz transformations in M, but it changes when the transformations in the extended space G are used. We call this model the Extended space model (ESM). From a physical point of view, our expansion means that processes in which the rest mass of the particles changes are acceptable now. In the ESM, gravity and electromagnetism are combined in one field. In the ESM, a photon can have a nonzero mass and this mass can be either positive or negative. It is also possible to establish in the frame of ESM connection between mass of a particle and its size.展开更多
The generalization of Einstein’s special theory of relativity (SRT) is proposed. In this model, the possibility of unification of scalar gravity and electromagnetism into a single unified field is considered. Formall...The generalization of Einstein’s special theory of relativity (SRT) is proposed. In this model, the possibility of unification of scalar gravity and electromagnetism into a single unified field is considered. Formally, the generalization of the SRT is that instead of (1+3)-dimensional Minkowski space the (1+4)-dimensional extension G is considered. As the fifth additional coordinate the interval S is used. This value is saved under the usual Lorentz transformations in Minkowski space M, but it changes when the transformations in the extended space G are used. We call this model the extended space model (ESM). From a physical point of view, our expansion means that processes in which the rest mass of the particles changes are acceptable now. If the rest mass of a particle does not change and the physical quantities do not depend on an additional variable S, then the electromagnetic and gravitational fields exist independently of each other. But if the rest mass is variable and there is a dependence on S, then these two fields are combined into a single unified field. In the extended space model a photon can have a nonzero mass and this mass can be either positive or negative. In this model the 5- vectors which components correspond to energy, pulse and mass of a particle are isotropic both for massive and massless particles. The rotations in the (1+4) dimensional extended space G can transform massive particles into massless and vice versa.展开更多
The core missions of IoT are to sense data,transmit data and give feedback to the real world based on the calculation of the sensed data.The trust of sensing source data and transmission network is extremely important...The core missions of IoT are to sense data,transmit data and give feedback to the real world based on the calculation of the sensed data.The trust of sensing source data and transmission network is extremely important to IoT security.5G-IoT with its low latency,wide connectivity and high-speed transmission extends the business scenarios of IoT,yet it also brings new challenges to trust proof solutions of IoT.Currently,there is a lack of efficient and reliable trust proof solutions for massive dynamically connected nodes,while the existing solutions have high computational complexity and can't adapt to time-sensitive services in 5G-IoT scenarios.In order to solve the above problems,this paper proposes an adaptive multi-dimensional trust proof solution.Firstly,the static and dynamic attributes of sensing nodes are metricized,and the historical interaction as well as the recommendation information are combined with the comprehensive metric of sensing nodes,and a multi-dimensional fine-grained trusted metric model is established in this paper.Then,based on the comprehensive metrics,the sensing nodes are logically grouped and assigned with service levels to achieve the screening and isolation of malicious nodes.At the same time,the proposed solution reduces the energy consumption of the metric process and optimizes the impact of real-time metrics on the interaction latency.Simulation experiments show that the solution can accurately and efficiently identify malicious nodes and effectively guarantee the safe and trustworthy operation of 5G-IoT nodes,while having a small impact on the latency of the 5G network.展开更多
Quasi-one-dimensional(quasi-1D)van der Waals(vdWs)materials,such as ZrTe_(5),exhibit unique elec-trical properties and quantum phenomena,making them attractive for advanced electronic applications.However,large-scale ...Quasi-one-dimensional(quasi-1D)van der Waals(vdWs)materials,such as ZrTe_(5),exhibit unique elec-trical properties and quantum phenomena,making them attractive for advanced electronic applications.However,large-scale growth of ZrTe_(5) thin films presents challenges.We address this by employing sput-tering,a common semiconductor industry technique.The as-deposited ZrTe_(5) film is amorphous,and post-annealing induces a crystallization process akin to transition-metal dichalcogenides.Our study in-vestigates the electrical and optical properties during this amorphous-to-crystalline transition,reveal-ing insights into the underlying mechanism.This work contributes to the fundamental understanding of quasi-1D materials and introduces a scalable fabrication method for ZrTe_(5) which offers the possibility of fabricating unique future electronic and optical devices.展开更多
With respect to oceanic fluid dynamics,certain models have appeared,e.g.,an extended time-dependent(3+1)-dimensional shallow water wave equation in an ocean or a river,which we investigate in this paper.Using symbolic...With respect to oceanic fluid dynamics,certain models have appeared,e.g.,an extended time-dependent(3+1)-dimensional shallow water wave equation in an ocean or a river,which we investigate in this paper.Using symbolic computation,we find out,on one hand,a set of bilinear auto-Backlund transformations,which could connect certain solutions of that equation with other solutions of that equation itself,and on the other hand,a set of similarity reductions,which could go from that equation to a known ordinary differential equation.The results in this paper depend on all the oceanic variable coefficients in that equation.展开更多
This paper proposes a novel cargo loading algorithm applicable to automated conveyor-type loading systems.The algorithm offers improvements in computational efficiency and robustness by utilizing the concept of discre...This paper proposes a novel cargo loading algorithm applicable to automated conveyor-type loading systems.The algorithm offers improvements in computational efficiency and robustness by utilizing the concept of discrete derivatives and introducing logistics-related constraints.Optional consideration of the rotation of the cargoes was made to further enhance the optimality of the solutions,if possible to be physically implemented.Evaluation metrics were developed for accurate evaluation and enhancement of the algorithm’s ability to efficiently utilize the loading space and provide a high level of dynamic stability.Experimental results demonstrate the extensive robustness of the proposed algorithm to the diversity of cargoes present in Business-to-Consumer environments.This study contributes practical advancements in both cargo loading optimization and automation of the logistics industry,with potential applications in last-mile delivery services,warehousing,and supply chain management.展开更多
Lie symmetry analysis is applied to a(3+1)-dimensional combined potential Kadomtsev-Petviashvili equation with B-type Kadomtsev-Petviashvili equation(pKP-BKP equation)and the corresponding similarity reduction equatio...Lie symmetry analysis is applied to a(3+1)-dimensional combined potential Kadomtsev-Petviashvili equation with B-type Kadomtsev-Petviashvili equation(pKP-BKP equation)and the corresponding similarity reduction equations are obtained with the different infinitesimal generators.Invariant solutions with arbitrary functions and constants for the(3+1)-dimensional pKP-BKP equation,including the lump solution,the periodic-lump solution,the two-kink solution,the breather solution and the lump-two-kink solution,have been studied analytically and graphically.展开更多
In this paper,we investigate the(2+1)-dimensional three-component long-wave-short-wave resonance interaction system,which describes complex systems and nonlinear wave phenomena in physics.By employing the Hirota bilin...In this paper,we investigate the(2+1)-dimensional three-component long-wave-short-wave resonance interaction system,which describes complex systems and nonlinear wave phenomena in physics.By employing the Hirota bilinear method,we derive the general nondegenerate N-soliton solution of the system,where each short-wave component contains N arbitrary functions of the independent variable y.The presence of these arbitrary functions in the analytical solution enables the construction of a wide range of nondegenerate soliton types.Finally,we illustrate the structural features of several novel nondegenerate solitons,including M-shaped,multiple double-hump,and sawtooth double-striped solitons,as well as interactions between nondegenerate solitons,such as dromion-like solitons and solitoffs,with the aid of figures.展开更多
In this work,we study wave state transitions of the(2+1)-dimensional Kortewegde Vries-Sawada-Kotera-Ramani(2KdVSKR)equation by analyzing the characteristic line and phase shift.By converting the wave parameters of the...In this work,we study wave state transitions of the(2+1)-dimensional Kortewegde Vries-Sawada-Kotera-Ramani(2KdVSKR)equation by analyzing the characteristic line and phase shift.By converting the wave parameters of the N-soliton solution into complex numbers,the breath wave solution is constructed.The lump wave solution is derived through the long wave limit method.Then,by choosing appropriate parameter values,we acquire a number of transformed nonlinear waves whose gradient relation is discussed according to the ratio of the wave parameters.Furthermore,we reveal transition mechanisms of the waves by exploring the nonlinear superposition of the solitary and periodic wave components.Subsequently,locality,oscillation properties and evolutionary phenomenon of the transformed waves are presented.And we also prove the change in the geometrical properties of the characteristic lines leads to the phenomena of wave evolution.Finally,for higher-order waves,a range of interaction models are depicted along with their evolutionary phenomena.And we demonstrate that their diversity is due to the fact that the solitary and periodic wave components produce different phase shifts caused by time evolution and collisions.展开更多
Craniocerebral injuries represent the primary cause of fatalities among riders involved in two-wheeler accidents;nevertheless,the prevalence of helmet usage among these riders remains alarmingly low.Consequently,the a...Craniocerebral injuries represent the primary cause of fatalities among riders involved in two-wheeler accidents;nevertheless,the prevalence of helmet usage among these riders remains alarmingly low.Consequently,the accurate identification of riders who are wearing safety helmets is of paramount importance.Current detection algorithms exhibit several limitations,including inadequate accuracy,substantial model size,and suboptimal performance in complex environments with small targets.To address these challenges,we propose a novel lightweight detection algorithm,termed GL-YOLOv5,which is an enhancement of the You Only Look Once version 5(YOLOv5)framework.This model incorporates a Global DualPooling NoReduction Blend Attention(GDPB)module,which optimizes the MobileNetV3 architecture by reducing the number of channels by half and implementing a parallelized channel and spatial attention mechanism without dimensionality reduction.Additionally,it replaces the conventional convolutional layer with a channel shuffle approach to overcome the constraints associated with the Squeeze-and-Excitation(SE)attention module,thereby significantly improving both the efficiency and accuracy of feature extraction and decreasing computational complexity.Furthermore,we have optimized the Variable Normalization and Attention Channel Spatial Partitioning(VNACSP)within the C3 module of YOLOv5,which enhances sensitivity to small targets through the application of a lightweight channel attention mechanism,substituting it for the standard convolution in the necking network.The Parameter-Free Spatial Adaptive Feature Fusion(PSAFF)module is designed to adaptively modify the weights of each spatial position through spatial pooling and activation functions,thereby effectively enhancing the model’s ability to perceive contextual information over distances.Ultimately,GL-YOLOv5 performs remarkably in the custom dataset,achieving a model parameter count of 922,895 M,a computational load of 2.9 GFLOPS,and a mean average precision(mAP)of 92.1%.These advancements significantly improve the model’s detection capabilities and underscore its potential for practical applications.展开更多
Recently, during the investigations on planetary oceans, Hirota-Satsuma-Ito-type models have been developed. In this paper, for a(2+1)-dimensional generalized variable-coefficient Hirota-Satsuma-Ito system describing ...Recently, during the investigations on planetary oceans, Hirota-Satsuma-Ito-type models have been developed. In this paper, for a(2+1)-dimensional generalized variable-coefficient Hirota-Satsuma-Ito system describing the fluid dynamics of shallow-water waves in an open ocean, non-characteristic movable singular manifold and symbolic computation enable an oceanic auto-B?cklund transformation with three sets of the oceanic solitonic solutions. The results rely on the oceanic variable coefficients in that system. Future oceanic observations might detect some nonlinear features predicted in this paper, and relevant oceanographic insights might be expected.展开更多
We consider the Hyperverse as a collection of multiverses in a (4 + 1)-dimensional spacetime with gravitational constant G. Multiverses in our model are bouquets of thin shells (with synchronized intrinsic times). If ...We consider the Hyperverse as a collection of multiverses in a (4 + 1)-dimensional spacetime with gravitational constant G. Multiverses in our model are bouquets of thin shells (with synchronized intrinsic times). If gis the gravitational constant of a shell Sand εits thickness, then G~εg. The physical universe is supposed to be one of those thin shells inside the local bouquet called Local Multiverse. Other remarkable objects of the Hyperverse are supposed to be black holes, black lenses, black rings and (generalized) Black Saturns. In addition, Schwarzschild-de Sitter multiversal nurseries can be hidden inside those Black Saturns, leading to their Bousso-Hawking nucleation. It also suggests that black holes in our physical universe might harbor embedded (2 + 1)-dimensional multiverses. This is compatible with outstanding ideas and results of Bekenstein, Hawking-Vaz and Corda about “black holes as atoms” and the condensation of matter on “apparent horizons”. It allows us to formulate conjecture 12.1 about the origin of the Local Multiverse. As an alternative model, we examine spacetime warping of our universe by external universes. It gives data for the accelerated expansion and the cosmological constant Λ, which are in agreement with observation, thus opening a possibility for verification of the multiverse model.展开更多
In order to solve the problem of truncating the open boundaries of cylindrical waveguides used in the simulation of high power microwave (HPM) sources, this paper studies the convolutional PML (CPML) in the cylind...In order to solve the problem of truncating the open boundaries of cylindrical waveguides used in the simulation of high power microwave (HPM) sources, this paper studies the convolutional PML (CPML) in the cylindrical coordinate system. The electromagnetic field's FDTD equations and the expressions of axis boundary conditions are presented. Numerical experiments are conducted to validate the equations and axis boundary conditions. The performance of CPML is simulated when it is used to truncate the cylindrical waveguides excited by the sources with different frequencies and modes in the 2.5-dimensional problems. Numerical results show that the maximum relative errors are all less than -90 dB. The CPML method is introduced in the 2.5-dimensional electromagnetic PIC software, and the relativistic backward wave oscillator is simulated by using this method. The results show that the property of CPML is much better than that of the Mur-type absorbing boundary condition when they are used to truncate the open boundaries of waveguides. The CPML is especially suitable for truncating the open boundaries of the dispersive waveguide devices in the simulation of HPM sources.展开更多
基金supported by the Autonomous General Projects of the State Key Laboratory of Coal Mine Disaster Dynamics and Control,Chongqing University,China(Grant No.2011DA105287-MS202209)the National Natural Science Foundation of China,China(Grant Nos.52304149 and 52204127).
文摘The fracture and migration patterns of direct roofs play a critical role in excavation stability and mining pressure.However,current methods fail to capture the irregular three-dimensional(3D)behavior of these roofs.In this study,the problem was solved by introducing an innovative 2.5-dimensional(2.5D)Voronoi numerical simulation method,dividing rock layers into 2.5D Voronoi blocks and developing cohesive element-based failure models,supported by a strain-softening HoekeBrown model.The method was applied to the 8311 working face in the Taishan Mine in China,and its accuracy was confirmed through physical experiments.The following conclusions were drawn.The first roof break typically followed an"O-X"pattern.The direct roof did not break randomly over time;instead,it followed three distinct scenarios:(1)A complete break of the direct roof occurred,followed by a sequential collapse(ScenarioⅠ).(2)Regional irregular stacking in one area was followed by sequential collapse in other zones(ScenarioⅡ).(3)The staged breakdown of the direct roof led to separate and sequential collapses on the left and right flanks(ScenarioⅢ).Scenario I was quite common during the 400 m advance of the working face and occurred five times.The fracture characteristics in Scenario I led to widespread pressure on the hydraulic supports in the middle of the working face.Finally,the direct roof from the working face towards the goaf area underwent phases of overhanging,hinging,and collapsing plates.After the first and periodic breaks,the basic roof formed stable hinged plate structures reinforced by overhanging plates and irregular accumulations of the direct roof.
基金Sponsored by National Science and Technology Major Project of China(2012ZX04012011)National Natural Science Foundation of China(51375306)
文摘Waves occurring in cold-rolled plates or sheets can be divided into longitudinal and transverse waves. Classical leveling theories merely solve the problem of longitudinal waves, while no well accepted method can be employed for transverse waves. In order to investigate the essential deformation law of leveling for plates with transverse waves, a 2.5-dimensional (2.5- D) analytical approach was proposed. In this model, the plate was transversely divided into some strips with equal width; the strips are considered to be in the state of plane strain and each group of adjacent strips are assumed to be deformation compatible under stress. After calculation, the bending deformation of each strip and the leveling effect of overall plate were obtained by comprehensNe consideration of various strips along with the width. Bending of roller is a main approach to eliminate the transverse waves, which is widely accepted by the industry, but the essential effect of bending of roller on the deformation of plates and the calculation of bending of roller are unknown. According to the 2.5-D analytical model, it can be found that, for plates, it is neutral plane offsetting and middle plane elongation or contraction under inner stress that can effectively improve plate shape. Taking double side waves as an example, the appropriate values of bending of roller were obtained by the 2.5-D analytical model related to different initial unevenness, which was applicable to the current on-line adjusting of bending of roller in rolling industry.
文摘We consider the Hyperverse as a collection of multiverses in 5-dimensional spacetime with gravitational constant G. Each multiverse in our simplified model is a bouquet of nested spherical Gogberashvili shells. If g<sub>k</sub> is the gravitational constant of a thin shell S<sub>k</sub> and ε<sub>k</sub>, its thickness then G ~ ε<sub>k</sub>g<sub>k</sub>. The physical universe is supposed to be one of those shells inside the local nested bouquet called Local Multiverse. We relate this construction to Robinson-Trautman metrics describing expanding spacetimes with spherical gravitational waves. Supermassive astronomical black holes, located at cores of elliptic/spiral galaxies, are also conjecturally described within this theory. Our constructions are equally consistent with the modern theory of cosmological coupling.
文摘We propose the generalization of Einstein’s special theory of relativity (STR). In our model, we use the (1 + 4)-dimensional space G, which is the extension of the (1 + 3)-dimensional Minkowski space M. As a fifth additional coordinate, the interval S is used. This value is constant under the usual Lorentz transformations in M, but it changes when the transformations in the extended space G are used. We call this model the Extended space model (ESM). From a physical point of view, our expansion means that processes in which the rest mass of the particles changes are acceptable now. In the ESM, gravity and electromagnetism are combined in one field. In the ESM, a photon can have a nonzero mass and this mass can be either positive or negative. It is also possible to establish in the frame of ESM connection between mass of a particle and its size.
文摘The generalization of Einstein’s special theory of relativity (SRT) is proposed. In this model, the possibility of unification of scalar gravity and electromagnetism into a single unified field is considered. Formally, the generalization of the SRT is that instead of (1+3)-dimensional Minkowski space the (1+4)-dimensional extension G is considered. As the fifth additional coordinate the interval S is used. This value is saved under the usual Lorentz transformations in Minkowski space M, but it changes when the transformations in the extended space G are used. We call this model the extended space model (ESM). From a physical point of view, our expansion means that processes in which the rest mass of the particles changes are acceptable now. If the rest mass of a particle does not change and the physical quantities do not depend on an additional variable S, then the electromagnetic and gravitational fields exist independently of each other. But if the rest mass is variable and there is a dependence on S, then these two fields are combined into a single unified field. In the extended space model a photon can have a nonzero mass and this mass can be either positive or negative. In this model the 5- vectors which components correspond to energy, pulse and mass of a particle are isotropic both for massive and massless particles. The rotations in the (1+4) dimensional extended space G can transform massive particles into massless and vice versa.
基金supported by National Key R&D Program of China (2019YFB2102303)National Natural Science Foundation of China (NSFC61971014,NSFC11675199)+2 种基金Beijing Postdoctoral Research Foundation (2021-ZZ-079)Young Backbone Teacher Training Program of Henan Colleges and Universities (2021GGJS170)Henan Province Higher Education Key Research Project (23B520014)。
文摘The core missions of IoT are to sense data,transmit data and give feedback to the real world based on the calculation of the sensed data.The trust of sensing source data and transmission network is extremely important to IoT security.5G-IoT with its low latency,wide connectivity and high-speed transmission extends the business scenarios of IoT,yet it also brings new challenges to trust proof solutions of IoT.Currently,there is a lack of efficient and reliable trust proof solutions for massive dynamically connected nodes,while the existing solutions have high computational complexity and can't adapt to time-sensitive services in 5G-IoT scenarios.In order to solve the above problems,this paper proposes an adaptive multi-dimensional trust proof solution.Firstly,the static and dynamic attributes of sensing nodes are metricized,and the historical interaction as well as the recommendation information are combined with the comprehensive metric of sensing nodes,and a multi-dimensional fine-grained trusted metric model is established in this paper.Then,based on the comprehensive metrics,the sensing nodes are logically grouped and assigned with service levels to achieve the screening and isolation of malicious nodes.At the same time,the proposed solution reduces the energy consumption of the metric process and optimizes the impact of real-time metrics on the interaction latency.Simulation experiments show that the solution can accurately and efficiently identify malicious nodes and effectively guarantee the safe and trustworthy operation of 5G-IoT nodes,while having a small impact on the latency of the 5G network.
基金supported by the JSPS KAKENHI(Grant Nos.21H05009,22K20474,and 24K00915)the Murata Science Foundation+1 种基金supported by the Commissioned Research(No.JPJ012368C03701)of the National Institute of Information and Communications Technology(NICT),Japansupport from the Hirose Foundation and Iketani Science and Technology Foundation.
文摘Quasi-one-dimensional(quasi-1D)van der Waals(vdWs)materials,such as ZrTe_(5),exhibit unique elec-trical properties and quantum phenomena,making them attractive for advanced electronic applications.However,large-scale growth of ZrTe_(5) thin films presents challenges.We address this by employing sput-tering,a common semiconductor industry technique.The as-deposited ZrTe_(5) film is amorphous,and post-annealing induces a crystallization process akin to transition-metal dichalcogenides.Our study in-vestigates the electrical and optical properties during this amorphous-to-crystalline transition,reveal-ing insights into the underlying mechanism.This work contributes to the fundamental understanding of quasi-1D materials and introduces a scalable fabrication method for ZrTe_(5) which offers the possibility of fabricating unique future electronic and optical devices.
基金financially supported by the Scientific Research Foundation of North China University of Technology(Grant Nos.11005136024XN147-87 and 110051360024XN151-86).
文摘With respect to oceanic fluid dynamics,certain models have appeared,e.g.,an extended time-dependent(3+1)-dimensional shallow water wave equation in an ocean or a river,which we investigate in this paper.Using symbolic computation,we find out,on one hand,a set of bilinear auto-Backlund transformations,which could connect certain solutions of that equation with other solutions of that equation itself,and on the other hand,a set of similarity reductions,which could go from that equation to a known ordinary differential equation.The results in this paper depend on all the oceanic variable coefficients in that equation.
基金supported by the BK21 FOUR funded by the Ministry of Education of Korea and National Research Foundation of Korea,a Korea Agency for Infrastructure Technology Advancement(KAIA)grant funded by the Ministry of Land,Infrastructure,and Transport(Grant 1615013176)IITP(Institute of Information&Coummunications Technology Planning&Evaluation)-ICAN(ICT Challenge and Advanced Network of HRD)grant funded by the Korea government(Ministry of Science and ICT)(RS-2024-00438411).
文摘This paper proposes a novel cargo loading algorithm applicable to automated conveyor-type loading systems.The algorithm offers improvements in computational efficiency and robustness by utilizing the concept of discrete derivatives and introducing logistics-related constraints.Optional consideration of the rotation of the cargoes was made to further enhance the optimality of the solutions,if possible to be physically implemented.Evaluation metrics were developed for accurate evaluation and enhancement of the algorithm’s ability to efficiently utilize the loading space and provide a high level of dynamic stability.Experimental results demonstrate the extensive robustness of the proposed algorithm to the diversity of cargoes present in Business-to-Consumer environments.This study contributes practical advancements in both cargo loading optimization and automation of the logistics industry,with potential applications in last-mile delivery services,warehousing,and supply chain management.
文摘Lie symmetry analysis is applied to a(3+1)-dimensional combined potential Kadomtsev-Petviashvili equation with B-type Kadomtsev-Petviashvili equation(pKP-BKP equation)and the corresponding similarity reduction equations are obtained with the different infinitesimal generators.Invariant solutions with arbitrary functions and constants for the(3+1)-dimensional pKP-BKP equation,including the lump solution,the periodic-lump solution,the two-kink solution,the breather solution and the lump-two-kink solution,have been studied analytically and graphically.
基金supported by the National Natural Science Foundation of China,Grant No.12375006。
文摘In this paper,we investigate the(2+1)-dimensional three-component long-wave-short-wave resonance interaction system,which describes complex systems and nonlinear wave phenomena in physics.By employing the Hirota bilinear method,we derive the general nondegenerate N-soliton solution of the system,where each short-wave component contains N arbitrary functions of the independent variable y.The presence of these arbitrary functions in the analytical solution enables the construction of a wide range of nondegenerate soliton types.Finally,we illustrate the structural features of several novel nondegenerate solitons,including M-shaped,multiple double-hump,and sawtooth double-striped solitons,as well as interactions between nondegenerate solitons,such as dromion-like solitons and solitoffs,with the aid of figures.
基金supported by the National Natural Science Foundation of China(12371255,11975306)the Xuzhou Basic Research Program Project(KC23048)+1 种基金the Six Talent Peaks Project in Jiangsu Province(JY-059)the 333 Project in Jiangsu Province and the Fundamental Research Funds for the Central Universities of CUMT(2024ZDPYJQ1003).
文摘In this work,we study wave state transitions of the(2+1)-dimensional Kortewegde Vries-Sawada-Kotera-Ramani(2KdVSKR)equation by analyzing the characteristic line and phase shift.By converting the wave parameters of the N-soliton solution into complex numbers,the breath wave solution is constructed.The lump wave solution is derived through the long wave limit method.Then,by choosing appropriate parameter values,we acquire a number of transformed nonlinear waves whose gradient relation is discussed according to the ratio of the wave parameters.Furthermore,we reveal transition mechanisms of the waves by exploring the nonlinear superposition of the solitary and periodic wave components.Subsequently,locality,oscillation properties and evolutionary phenomenon of the transformed waves are presented.And we also prove the change in the geometrical properties of the characteristic lines leads to the phenomena of wave evolution.Finally,for higher-order waves,a range of interaction models are depicted along with their evolutionary phenomena.And we demonstrate that their diversity is due to the fact that the solitary and periodic wave components produce different phase shifts caused by time evolution and collisions.
文摘Craniocerebral injuries represent the primary cause of fatalities among riders involved in two-wheeler accidents;nevertheless,the prevalence of helmet usage among these riders remains alarmingly low.Consequently,the accurate identification of riders who are wearing safety helmets is of paramount importance.Current detection algorithms exhibit several limitations,including inadequate accuracy,substantial model size,and suboptimal performance in complex environments with small targets.To address these challenges,we propose a novel lightweight detection algorithm,termed GL-YOLOv5,which is an enhancement of the You Only Look Once version 5(YOLOv5)framework.This model incorporates a Global DualPooling NoReduction Blend Attention(GDPB)module,which optimizes the MobileNetV3 architecture by reducing the number of channels by half and implementing a parallelized channel and spatial attention mechanism without dimensionality reduction.Additionally,it replaces the conventional convolutional layer with a channel shuffle approach to overcome the constraints associated with the Squeeze-and-Excitation(SE)attention module,thereby significantly improving both the efficiency and accuracy of feature extraction and decreasing computational complexity.Furthermore,we have optimized the Variable Normalization and Attention Channel Spatial Partitioning(VNACSP)within the C3 module of YOLOv5,which enhances sensitivity to small targets through the application of a lightweight channel attention mechanism,substituting it for the standard convolution in the necking network.The Parameter-Free Spatial Adaptive Feature Fusion(PSAFF)module is designed to adaptively modify the weights of each spatial position through spatial pooling and activation functions,thereby effectively enhancing the model’s ability to perceive contextual information over distances.Ultimately,GL-YOLOv5 performs remarkably in the custom dataset,achieving a model parameter count of 922,895 M,a computational load of 2.9 GFLOPS,and a mean average precision(mAP)of 92.1%.These advancements significantly improve the model’s detection capabilities and underscore its potential for practical applications.
基金financially supported by the Scientific Research Foundation of North China University of Technology (Grant Nos.11005136024XN147-87 and 110051360024XN151-86)。
文摘Recently, during the investigations on planetary oceans, Hirota-Satsuma-Ito-type models have been developed. In this paper, for a(2+1)-dimensional generalized variable-coefficient Hirota-Satsuma-Ito system describing the fluid dynamics of shallow-water waves in an open ocean, non-characteristic movable singular manifold and symbolic computation enable an oceanic auto-B?cklund transformation with three sets of the oceanic solitonic solutions. The results rely on the oceanic variable coefficients in that system. Future oceanic observations might detect some nonlinear features predicted in this paper, and relevant oceanographic insights might be expected.
文摘We consider the Hyperverse as a collection of multiverses in a (4 + 1)-dimensional spacetime with gravitational constant G. Multiverses in our model are bouquets of thin shells (with synchronized intrinsic times). If gis the gravitational constant of a shell Sand εits thickness, then G~εg. The physical universe is supposed to be one of those thin shells inside the local bouquet called Local Multiverse. Other remarkable objects of the Hyperverse are supposed to be black holes, black lenses, black rings and (generalized) Black Saturns. In addition, Schwarzschild-de Sitter multiversal nurseries can be hidden inside those Black Saturns, leading to their Bousso-Hawking nucleation. It also suggests that black holes in our physical universe might harbor embedded (2 + 1)-dimensional multiverses. This is compatible with outstanding ideas and results of Bekenstein, Hawking-Vaz and Corda about “black holes as atoms” and the condensation of matter on “apparent horizons”. It allows us to formulate conjecture 12.1 about the origin of the Local Multiverse. As an alternative model, we examine spacetime warping of our universe by external universes. It gives data for the accelerated expansion and the cosmological constant Λ, which are in agreement with observation, thus opening a possibility for verification of the multiverse model.
文摘In order to solve the problem of truncating the open boundaries of cylindrical waveguides used in the simulation of high power microwave (HPM) sources, this paper studies the convolutional PML (CPML) in the cylindrical coordinate system. The electromagnetic field's FDTD equations and the expressions of axis boundary conditions are presented. Numerical experiments are conducted to validate the equations and axis boundary conditions. The performance of CPML is simulated when it is used to truncate the cylindrical waveguides excited by the sources with different frequencies and modes in the 2.5-dimensional problems. Numerical results show that the maximum relative errors are all less than -90 dB. The CPML method is introduced in the 2.5-dimensional electromagnetic PIC software, and the relativistic backward wave oscillator is simulated by using this method. The results show that the property of CPML is much better than that of the Mur-type absorbing boundary condition when they are used to truncate the open boundaries of waveguides. The CPML is especially suitable for truncating the open boundaries of the dispersive waveguide devices in the simulation of HPM sources.