To explore the formation mechanism of anisotropy in Ti-6Al-4V alloy fabricated by selective laser melting(SLM),the compressive mechanical properties,microhardness,microstructure,and crystallographic orientation of the...To explore the formation mechanism of anisotropy in Ti-6Al-4V alloy fabricated by selective laser melting(SLM),the compressive mechanical properties,microhardness,microstructure,and crystallographic orientation of the alloy across different planes were investigated.The anisotropy of SLM-fabricated Ti-6Al-4V alloys was analyzed,and the electron backscatter diffraction technique was used to investigate the influence of different grain types and orientations on the stress-strain distribution at various scales.Results reveal that in room-temperature compression tests at a strain rate of 10^(-3) s^(-1),both the compressive yield strength and microhardness vary along the deposition direction,indicating a certain degree of mechanical property anisotropy.The alloy exhibits a columnar microstructure;along the deposition direction,the grains appear equiaxed,and they have internal hexagonal close-packed(hcp)α/α'martensitic structure.α'phase has a preferential orientation approximately along the<0001>direction.Anisotropy arises from the high aspect ratio of columnar grains,along with the weak texture of the microstructure and low symmetry of the hcp crystal structure.展开更多
Titanium/magnesium alloy bimetal composites show promising prospects for lightweight applications.The Ti/Mg bimetal composite was fabricated in Ti−6Al−4V pyramidal lattice structure via AZ91D melt infiltration.Compara...Titanium/magnesium alloy bimetal composites show promising prospects for lightweight applications.The Ti/Mg bimetal composite was fabricated in Ti−6Al−4V pyramidal lattice structure via AZ91D melt infiltration.Comparative analysis of the tensile and compressive properties was conducted between the composite and its constituent materials(Ti−6Al−4V lattice structure and AZ91D matrix).The tensile strength of the composite(95.9 MPa)was comparable to that of the Ti−6Al−4V lattice structure(94.4 MPa)but lower than that of the AZ91D alloy(120.8 MPa)due to gaps at the bimetal interfaces hindering load transfer during tension.The composite exhibited greater elongation(1.7%)compared to AZ91D(1.4%)alloy but less than the Ti−6Al−4V lattice structure(2.6%).The compressive performance of the composite outperformed that of the Ti−6Al−4V lattice structure,underscoring the significance of the AZ91D alloy in compressive deformation.Fracture analysis indicated that the predominant failure reasons in both the composite and lattice structures were attributed to the breakage of lattice struts at nodes caused by the stress concentration.展开更多
基金National Natural Science Foundation of China(51504138,51674118,52271177)Hunan Provincial Natural Science Foundation of China(2023JJ50181)Supported by State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology(P2024-022)。
文摘To explore the formation mechanism of anisotropy in Ti-6Al-4V alloy fabricated by selective laser melting(SLM),the compressive mechanical properties,microhardness,microstructure,and crystallographic orientation of the alloy across different planes were investigated.The anisotropy of SLM-fabricated Ti-6Al-4V alloys was analyzed,and the electron backscatter diffraction technique was used to investigate the influence of different grain types and orientations on the stress-strain distribution at various scales.Results reveal that in room-temperature compression tests at a strain rate of 10^(-3) s^(-1),both the compressive yield strength and microhardness vary along the deposition direction,indicating a certain degree of mechanical property anisotropy.The alloy exhibits a columnar microstructure;along the deposition direction,the grains appear equiaxed,and they have internal hexagonal close-packed(hcp)α/α'martensitic structure.α'phase has a preferential orientation approximately along the<0001>direction.Anisotropy arises from the high aspect ratio of columnar grains,along with the weak texture of the microstructure and low symmetry of the hcp crystal structure.
基金the financial support from the National Natural Science Foundation of China(Nos.51875062,52205336)。
文摘Titanium/magnesium alloy bimetal composites show promising prospects for lightweight applications.The Ti/Mg bimetal composite was fabricated in Ti−6Al−4V pyramidal lattice structure via AZ91D melt infiltration.Comparative analysis of the tensile and compressive properties was conducted between the composite and its constituent materials(Ti−6Al−4V lattice structure and AZ91D matrix).The tensile strength of the composite(95.9 MPa)was comparable to that of the Ti−6Al−4V lattice structure(94.4 MPa)but lower than that of the AZ91D alloy(120.8 MPa)due to gaps at the bimetal interfaces hindering load transfer during tension.The composite exhibited greater elongation(1.7%)compared to AZ91D(1.4%)alloy but less than the Ti−6Al−4V lattice structure(2.6%).The compressive performance of the composite outperformed that of the Ti−6Al−4V lattice structure,underscoring the significance of the AZ91D alloy in compressive deformation.Fracture analysis indicated that the predominant failure reasons in both the composite and lattice structures were attributed to the breakage of lattice struts at nodes caused by the stress concentration.