Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equationy (4n)=f(t,y,y′,y″,...,y (4n-1))(a)with the boundary conditions g 2i(y (2i)(a),y (2i+1...Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equationy (4n)=f(t,y,y′,y″,...,y (4n-1))(a)with the boundary conditions g 2i(y (2i)(a),y (2i+1)(a))=0,h 2i(y (2i)(c),y (2i+1)(c))=0,(i=0,1,...,2n-1)(b) where the functions f, g i and h i are continuous with certain monotone properties. For the boundary value problems of nonlinear nth order differential equationy (n)=f(t,y,y′,y″,...,y (n-1))many results have been given at the present time. But the existence of solutions of boundary value problem (a),(b) studied in this paper has not been covered by the above researches. Moreover, the corollary of the important theorem in this paper, i.e. existence of solutions of the boundary value problem.y (4n)=f(t,y,y′,y″,...,y (4n-1)) a 2iy (2i)(a)+a 2i+1y (2i+1)(a)=b 2i,c 2iy (2i)(c)+c 2i+1y (2i+1)(c)=d 2i,(i=0,1,...2n-1)has not been dealt with in previous works.展开更多
The minimum energy and stable configurations in the spherical,equal mass full 4-body problem are investigated.This problem is defined as the dynamics of finite density spheres which interact gravitationally and throug...The minimum energy and stable configurations in the spherical,equal mass full 4-body problem are investigated.This problem is defined as the dynamics of finite density spheres which interact gravitationally and through surface contact forces.This is a variation of the gravitational n-body problem in which the bodies are not allowed to come arbitrarily close to each other(due to their finite density),enabling the existence of resting configurations in addition to orbital motion.Previous work on this problem has outlined an efficient and simple way in which the stability of configurations in this problem can be defined.This methodology is applied to the 4-body problem,where we find multiple resting equilibrium configurations and outline the stability of a number of these.The study of these configurations is important for understanding the mechanics and morphological properties of small rubble pile asteroids.These results can also be generalized to other configurations of bodies that interact via field potentials and surface contact forces.展开更多
In this paper we present and test a numerical method for computing eigenvalues of 4th order Sturm-Liouville (SL) differential operators on finite intervals with regular boundary conditions. This method is a 4th order ...In this paper we present and test a numerical method for computing eigenvalues of 4th order Sturm-Liouville (SL) differential operators on finite intervals with regular boundary conditions. This method is a 4th order shooting method based on Magnus expansions (MG4) which use MG4 shooting as the integrator. This method is similar to the SLEUTH (Sturm-Liouville Eigenvalues Using Theta Matrices) method of Greenberg and Marletta which uses the 2nd order Pruess method (also known as the MG2 shooting method) for the integrator. This method often achieves near machine precision accuracies, and some comparisons of its performance against the well-known SLEUTH software package are presented.展开更多
Effect of perturbations in Coriolis and centrifugal forces on the non-linear stability of the libration point L4 in the restricted three body problem is studied when both the primaries are axis symmetric bodies (triax...Effect of perturbations in Coriolis and centrifugal forces on the non-linear stability of the libration point L4 in the restricted three body problem is studied when both the primaries are axis symmetric bodies (triaxial rigid bodies) and the bigger primary is a source of radiation. Moser’s conditions are utilized in this study by employing the iterative scheme of Henrard for transforming the Hamiltonian to the Birkhoff’s normal form with the help of double D’Alembert’s series. It is found that L4 is stable for all mass ratios in the range of linear stability except for the three mass ratios μc1, μc2 and μc3, which depend upon the perturbations ε1 and ε1 in the Coriolis and centrifugal forces respectively and the parameters A1,A2,A3 and A4 which depend upon the semi-axes a1,b1,c1;a2,b2,c2 of the triaxial rigid bodies and p, the radiation parameter.展开更多
文摘Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equationy (4n)=f(t,y,y′,y″,...,y (4n-1))(a)with the boundary conditions g 2i(y (2i)(a),y (2i+1)(a))=0,h 2i(y (2i)(c),y (2i+1)(c))=0,(i=0,1,...,2n-1)(b) where the functions f, g i and h i are continuous with certain monotone properties. For the boundary value problems of nonlinear nth order differential equationy (n)=f(t,y,y′,y″,...,y (n-1))many results have been given at the present time. But the existence of solutions of boundary value problem (a),(b) studied in this paper has not been covered by the above researches. Moreover, the corollary of the important theorem in this paper, i.e. existence of solutions of the boundary value problem.y (4n)=f(t,y,y′,y″,...,y (4n-1)) a 2iy (2i)(a)+a 2i+1y (2i+1)(a)=b 2i,c 2iy (2i)(c)+c 2i+1y (2i+1)(c)=d 2i,(i=0,1,...2n-1)has not been dealt with in previous works.
文摘The minimum energy and stable configurations in the spherical,equal mass full 4-body problem are investigated.This problem is defined as the dynamics of finite density spheres which interact gravitationally and through surface contact forces.This is a variation of the gravitational n-body problem in which the bodies are not allowed to come arbitrarily close to each other(due to their finite density),enabling the existence of resting configurations in addition to orbital motion.Previous work on this problem has outlined an efficient and simple way in which the stability of configurations in this problem can be defined.This methodology is applied to the 4-body problem,where we find multiple resting equilibrium configurations and outline the stability of a number of these.The study of these configurations is important for understanding the mechanics and morphological properties of small rubble pile asteroids.These results can also be generalized to other configurations of bodies that interact via field potentials and surface contact forces.
文摘In this paper we present and test a numerical method for computing eigenvalues of 4th order Sturm-Liouville (SL) differential operators on finite intervals with regular boundary conditions. This method is a 4th order shooting method based on Magnus expansions (MG4) which use MG4 shooting as the integrator. This method is similar to the SLEUTH (Sturm-Liouville Eigenvalues Using Theta Matrices) method of Greenberg and Marletta which uses the 2nd order Pruess method (also known as the MG2 shooting method) for the integrator. This method often achieves near machine precision accuracies, and some comparisons of its performance against the well-known SLEUTH software package are presented.
文摘Effect of perturbations in Coriolis and centrifugal forces on the non-linear stability of the libration point L4 in the restricted three body problem is studied when both the primaries are axis symmetric bodies (triaxial rigid bodies) and the bigger primary is a source of radiation. Moser’s conditions are utilized in this study by employing the iterative scheme of Henrard for transforming the Hamiltonian to the Birkhoff’s normal form with the help of double D’Alembert’s series. It is found that L4 is stable for all mass ratios in the range of linear stability except for the three mass ratios μc1, μc2 and μc3, which depend upon the perturbations ε1 and ε1 in the Coriolis and centrifugal forces respectively and the parameters A1,A2,A3 and A4 which depend upon the semi-axes a1,b1,c1;a2,b2,c2 of the triaxial rigid bodies and p, the radiation parameter.