BACKGROUND Paradoxically,patients with T4N0M0(stage II,no lymph node metastasis)colon cancer have a worse prognosis than those with T2N1-2M0(stage III).However,no previous report has addressed this issue.AIM To screen...BACKGROUND Paradoxically,patients with T4N0M0(stage II,no lymph node metastasis)colon cancer have a worse prognosis than those with T2N1-2M0(stage III).However,no previous report has addressed this issue.AIM To screen prognostic risk factors for T4N0M0 colon cancer and construct a prognostic nomogram model for these patients.METHODS Two hundred patients with T4N0M0 colon cancer were treated at Tianjin Medical University General Hospital between January 2017 and December 2021,of which 112 patients were assigned to the training cohort,and the remaining 88 patients were assigned to the validation cohort.Differences between the training and validation groups were analyzed.The training cohort was subjected to multi-variate analysis to select prognostic risk factors for T4N0M0 colon cancer,followed by the construction of a nomogram model.RESULTS The 3-year overall survival(OS)rates were 86.2%and 74.4%for the training and validation cohorts,respectively.Enterostomy(P=0.000),T stage(P=0.001),right hemicolon(P=0.025),irregular review(P=0.040),and carbohydrate antigen 199(CA199)(P=0.011)were independent risk factors of OS in patients with T4N0M0 colon cancer.A nomogram model with good concordance and accuracy was constructed.CONCLUSION Enterostomy,T stage,right hemicolon,irregular review,and CA199 were independent risk factors for OS in patients with T4N0M0 colon cancer.The nomogram model exhibited good agreement and accuracy.展开更多
SA508Gr.4 N steel is commonly used in nuclear pressure vessels. The current study discloses the impact of austenitizing temperature on its martensitic transformation. Various austenitizing temperatures were employed t...SA508Gr.4 N steel is commonly used in nuclear pressure vessels. The current study discloses the impact of austenitizing temperature on its martensitic transformation. Various austenitizing temperatures were employed to examine the martensitic transformation at different experimental conditions. The characteristics of grain boundaries, microstructure, transformation kinetics, and crystallography of the martensitic phase following the austenitizing process and martensitic transformation were analyzed. Austenitizing temperatures had minimal effects on the critical temperature of the austenitizing phase transition. However, an increase in austenitizing temperature resulted in larger grain sizes. The phase composition primarily consisted of lath martensite, accompanied by a small amount of residual austenite (RA). As the austenitizing temperature increased, the temperature of martensite-start temperature (Ms) initially decreased and then increased. On the other hand, the temperature of martensite-finish (Mf) showed no significant sensitivity to changes in the austenitizing temperature. Moreover, the average size of the lath martensite structure was increased, and there was an increased tendency for variant selection as the austenitizing temperature increased, and the combination of specific orientation relationships appeared. This study is very valuable for revealing the microstructure evolution at different temperatures.展开更多
基金Supported by Health Science and Technology Project of Tianjin Health Commission,No.ZC20190Tianjin Key Medical Discipline(Specialty)Construction Project,No.TJYXZDXK-005ATianjin Medical University Clinical Research Fund,No.22ZYYLCCG04.
文摘BACKGROUND Paradoxically,patients with T4N0M0(stage II,no lymph node metastasis)colon cancer have a worse prognosis than those with T2N1-2M0(stage III).However,no previous report has addressed this issue.AIM To screen prognostic risk factors for T4N0M0 colon cancer and construct a prognostic nomogram model for these patients.METHODS Two hundred patients with T4N0M0 colon cancer were treated at Tianjin Medical University General Hospital between January 2017 and December 2021,of which 112 patients were assigned to the training cohort,and the remaining 88 patients were assigned to the validation cohort.Differences between the training and validation groups were analyzed.The training cohort was subjected to multi-variate analysis to select prognostic risk factors for T4N0M0 colon cancer,followed by the construction of a nomogram model.RESULTS The 3-year overall survival(OS)rates were 86.2%and 74.4%for the training and validation cohorts,respectively.Enterostomy(P=0.000),T stage(P=0.001),right hemicolon(P=0.025),irregular review(P=0.040),and carbohydrate antigen 199(CA199)(P=0.011)were independent risk factors of OS in patients with T4N0M0 colon cancer.A nomogram model with good concordance and accuracy was constructed.CONCLUSION Enterostomy,T stage,right hemicolon,irregular review,and CA199 were independent risk factors for OS in patients with T4N0M0 colon cancer.The nomogram model exhibited good agreement and accuracy.
基金financially supported by the Yunnan Fundamental Research Projects(Grant No.202101AU070152)the Yunnan Ten Thousand Talents Plan Young&Elite Talents Project(Grant No.YNWR-QNBJ-2020-020)+2 种基金the Key Research&Development Program of Yunnan Province(Grant Nos.202103AA080017 and CBN21281004A)the Natural Science Research Foundation of Kunming University of Science and Technology(Grant No.KKZ3202051043)supported via funding from Prince Sattam bin Abdulaziz University project No.PSAU/2023/R/1444.
文摘SA508Gr.4 N steel is commonly used in nuclear pressure vessels. The current study discloses the impact of austenitizing temperature on its martensitic transformation. Various austenitizing temperatures were employed to examine the martensitic transformation at different experimental conditions. The characteristics of grain boundaries, microstructure, transformation kinetics, and crystallography of the martensitic phase following the austenitizing process and martensitic transformation were analyzed. Austenitizing temperatures had minimal effects on the critical temperature of the austenitizing phase transition. However, an increase in austenitizing temperature resulted in larger grain sizes. The phase composition primarily consisted of lath martensite, accompanied by a small amount of residual austenite (RA). As the austenitizing temperature increased, the temperature of martensite-start temperature (Ms) initially decreased and then increased. On the other hand, the temperature of martensite-finish (Mf) showed no significant sensitivity to changes in the austenitizing temperature. Moreover, the average size of the lath martensite structure was increased, and there was an increased tendency for variant selection as the austenitizing temperature increased, and the combination of specific orientation relationships appeared. This study is very valuable for revealing the microstructure evolution at different temperatures.