在一个小型Novell网的设计开发过程中,需要把Net-Ware4.10服务器配置为TCP/IP网关。因为一般书上都没有这方面的内容,所以笔者把配置过程向大家叙述一下。 所配置的网络是一个异种机互连的以太网,有一个服务器,若干台PC,还有一个站点是...在一个小型Novell网的设计开发过程中,需要把Net-Ware4.10服务器配置为TCP/IP网关。因为一般书上都没有这方面的内容,所以笔者把配置过程向大家叙述一下。 所配置的网络是一个异种机互连的以太网,有一个服务器,若干台PC,还有一个站点是嵌入式的工控机。服务器上的操作系统为Net Ware 4.10,PC机的操作系统为Window3.1,工控机上运行一个实时操作系统。展开更多
Based on the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) Version 4.10 products released on 8 November 2016, the Level 2 (L2) aerosol product over the Tibetan Plateau (TP) is evalu...Based on the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) Version 4.10 products released on 8 November 2016, the Level 2 (L2) aerosol product over the Tibetan Plateau (TP) is evaluated and the aerosol radiative effect is also estimated in this study. As there are still some missing aerosol data points in the day-time CALIPSO Version 4.10 L2 product, this study re-calculated the aerosol extinction coefficient to explore the aer-osol radiative effect over the TP based on the CALIPSO Level 1 (L1) and CloudSat 2B-CLDCLASS-LIDAR products. The energy budget estimation obtained by using the AODs (aerosol optical depths) from calculated aerosol extinction coefficient as an input to a radiative transfer model shows better agreement with the Earth's Radiant En- ergy System (CERES) and CloudSat 2B-FLXHR-LIDAR observations than that with the input of AODs from aero- sol extinction coefficient from CALIPSO Version 4.10 L2 product. The radiative effect and heating rate of aerosols over the TP are further simulated by using the calculated aerosol extinction coefficient. The dust aerosols may heat the atmosphere by retaining the energy in the layer. The instantaneous heating rate can be as high as 5.5 K day^-1 de-pending on the density of the dust layers. Overall, the dust aerosols significantly affect the radiative energy budget and thermodynamic structure of the air over the TP, mainly by altering the shortwave radiation budget. The signific-ant influence of dust aerosols over the TP on the radiation budget may have important implications for investigating the atmospheric circulation and future regional and global climate.展开更多
文摘在一个小型Novell网的设计开发过程中,需要把Net-Ware4.10服务器配置为TCP/IP网关。因为一般书上都没有这方面的内容,所以笔者把配置过程向大家叙述一下。 所配置的网络是一个异种机互连的以太网,有一个服务器,若干台PC,还有一个站点是嵌入式的工控机。服务器上的操作系统为Net Ware 4.10,PC机的操作系统为Window3.1,工控机上运行一个实时操作系统。
基金Supported by the Strategic Priority Research Program of Chinese Academy of Sciences(XDA2006010301)National Natural Science Foundation of China(91737101,41475095,and 41405010)+1 种基金Fundamental Research Funds for Central Universities(lzujbky-2017-63)China 111 Project(B13045)
文摘Based on the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) Version 4.10 products released on 8 November 2016, the Level 2 (L2) aerosol product over the Tibetan Plateau (TP) is evaluated and the aerosol radiative effect is also estimated in this study. As there are still some missing aerosol data points in the day-time CALIPSO Version 4.10 L2 product, this study re-calculated the aerosol extinction coefficient to explore the aer-osol radiative effect over the TP based on the CALIPSO Level 1 (L1) and CloudSat 2B-CLDCLASS-LIDAR products. The energy budget estimation obtained by using the AODs (aerosol optical depths) from calculated aerosol extinction coefficient as an input to a radiative transfer model shows better agreement with the Earth's Radiant En- ergy System (CERES) and CloudSat 2B-FLXHR-LIDAR observations than that with the input of AODs from aero- sol extinction coefficient from CALIPSO Version 4.10 L2 product. The radiative effect and heating rate of aerosols over the TP are further simulated by using the calculated aerosol extinction coefficient. The dust aerosols may heat the atmosphere by retaining the energy in the layer. The instantaneous heating rate can be as high as 5.5 K day^-1 de-pending on the density of the dust layers. Overall, the dust aerosols significantly affect the radiative energy budget and thermodynamic structure of the air over the TP, mainly by altering the shortwave radiation budget. The signific-ant influence of dust aerosols over the TP on the radiation budget may have important implications for investigating the atmospheric circulation and future regional and global climate.