Recent advances in artificial intelligence and the availability of large-scale benchmarks have made deepfake video generation and manipulation easier.Therefore,developing reliable and robust deepfake video detection m...Recent advances in artificial intelligence and the availability of large-scale benchmarks have made deepfake video generation and manipulation easier.Therefore,developing reliable and robust deepfake video detection mechanisms is paramount.This research introduces a novel real-time deepfake video detection framework by analyzing gaze and blink patterns,addressing the spatial-temporal challenges unique to gaze and blink anomalies using the TimeSformer and hybrid Transformer-CNN models.The TimeSformer architecture leverages spatial-temporal attention mechanisms to capture fine-grained blinking intervals and gaze direction anomalies.Compared to state-of-the-art traditional convolutional models like MesoNet and EfficientNet,which primarily focus on global facial features,our approach emphasizes localized eye-region analysis,significantly enhancing detection accuracy.We evaluate our framework on four standard datasets:FaceForensics,CelebDF-V2,DFDC,and FakeAVCeleb.The proposed framework results reveal higher accuracy,with the TimeSformer model achieving accuracies of 97.5%,96.3%,95.8%,and 97.1%,and with the hybrid Transformer-CNN model demonstrating accuracies of 92.8%,91.5%,90.9%,and 93.2%,on FaceForensics,CelebDF-V2,DFDC,and FakeAVCeleb datasets,respectively,showing robustness in distinguishing manipulated from authentic videos.Our research provides a robust state-of-the-art framework for real-time deepfake video detection.This novel study significantly contributes to video forensics,presenting scalable and accurate real-world application solutions.展开更多
Escherichia coli expressing F4 fimbriae is the major pathogenic bacteria that causes diarrhea in piglets before weaning. The adhesion of E. coli to the brush borders of the epithelial cells of piglets is the precondit...Escherichia coli expressing F4 fimbriae is the major pathogenic bacteria that causes diarrhea in piglets before weaning. The adhesion of E. coli to the brush borders of the epithelial cells of piglets is the precondition leading to diarrhea, which in turn is due to the presence of the F4 receptors determined by an autosomal recessive gene on the brush borders of the epithelial cells. In order to clarify the genetic mechanism of the adhesion, an in vitro adhesion experiment was carded out for three variants of E. coli F4 (ab, ac, and ad) in 366 piglets of three pig breeds [Landrace (LR), Large White (LW), and Songliao Black (SB)]. The results showed that there existed significant differences (P〈0.001) in the adhesion percentage among the three breeds. Most SB piglets were nonadhesive for all the three variants, whereas most LR piglets were adhesive. Within each breed except for LR, the proportions of the three F4 variants adhering to the brush borders differed significantly. According to the patterns of the adhesion of the three F4 variants in the three breeds, it is very likely that the three F4 variants F4ab, F4ac, and F4ad have different receptors that are controlled by three different loci.展开更多
The transcription factors, including OCT4, NANOG, and SOX2, played crucial roles in the maintenance of self-renewal and pluripotency in embryonic stem cells (ESCs). They expressed in preimplantation mammalian develo...The transcription factors, including OCT4, NANOG, and SOX2, played crucial roles in the maintenance of self-renewal and pluripotency in embryonic stem cells (ESCs). They expressed in preimplantation mammalian development with spa- tio-temporal pattern and took part in regulation of development. However, their expression and roles in goat had not been reported. In the present study, the expression of OCT4, NANOG, and SOX2 in goat preimplantation embryos both in vivo and in vitro were detected by real-time RCR and immunofluorescence. For in vivo fertilized embryos, the transcripts of OCT4, NANOG, and SOX2 could be detected from oocytes to blastocyst stage, their expression in morula and blastocyst stages was much higher than other stage. OCT4 protein was detected from oocyte to blastocyst, but the fluorescence was more located-intensive with nuclei from 8-cell stage, its expression present in both inner cell mass (ICM) and trophoblast cells (TE) at blastocyse stage. NANOG protein was similar to OCT4, the signaling of fluorescence completely focused on cell nuclei, while the SOX2 firstly showed nuclei location in morula. Comparing to in vivo fertilized embryo, the mRNA of these three transcription factors could be detected at 8-cell stage in parthenogenetic embryos (in vitro). Thereafter, the expressional level rose gradually along with embryo development. The locations of OCT4 and NANOG proteins were similar to in vivo fertilized embryos, and they located in cell nuclei from morula to blastocyst stage, while SOX2 protein firstly could be detected in cell nuclei at 8-cell stage. These differences suggested that OCT4, NANOG, and SOX2 played different function in regulating development of goat preimplantation embryos. These results may provide a novel insight to goat embryo development and be useful for goat ESCs isolation.展开更多
We report the fabrication of 4-inch nano patterned wafer by two-beam laser interference lithography and analyze the uniformity in detail. The profile of the dots array with a period of 800 nm divided into five regions...We report the fabrication of 4-inch nano patterned wafer by two-beam laser interference lithography and analyze the uniformity in detail. The profile of the dots array with a period of 800 nm divided into five regions is characterized by a scanning electron microscope. The average size in each region ranges from 270 nm to 320 nm,and the deviation is almost 4%, which is approaching the applicable value of 3% in the industrial process. We simulate the two-beam laser interference lithography system with MATLAB software and then calculate the distribution of light intensity around the 4 inch area. The experimental data fit very well with the calculated results. Analysis of the experimental data and calculated data indicates that laser beam quality and space filter play important roles in achieving a periodical nanoscale pattern with high uniformity and large area. There is the potential to obtain more practical applications.展开更多
In cooperation with figure-of-merits the Rietveld analysis can appraise both angular and intensity data of powder diffraction. In this work, X-ray diffraction pattern of Bi4(SiO4)3 was redetermined with intensity figu...In cooperation with figure-of-merits the Rietveld analysis can appraise both angular and intensity data of powder diffraction. In this work, X-ray diffraction pattern of Bi4(SiO4)3 was redetermined with intensity figure-of-merits, which qualify agreement between observed and calculated relative intensities. F30 is 158.90 (0.0059, 32), intensity figure of merit Rint is 8.7, I20(17), 8.0. The values of figure-of-merits show that the data of JCPDS cards are distorted. Both the experimental and calculated peak positions and heights are listed in detail.展开更多
细胞因子是调节机体免疫和神经内分泌功能的生物活性物质,其信号的激发、放大和持续在时间和空间上都受到严格调控 。细胞因子信号传导抑制因子(Suppressor of cytokine signaling.socs)是细胞因子信号通路的负调节因子,通过负反...细胞因子是调节机体免疫和神经内分泌功能的生物活性物质,其信号的激发、放大和持续在时间和空间上都受到严格调控 。细胞因子信号传导抑制因子(Suppressor of cytokine signaling.socs)是细胞因子信号通路的负调节因子,通过负反馈抑制细胞因子的信号传递,防止过度的信号反应干扰机体代谢平衡和细胞功能 .展开更多
文摘Recent advances in artificial intelligence and the availability of large-scale benchmarks have made deepfake video generation and manipulation easier.Therefore,developing reliable and robust deepfake video detection mechanisms is paramount.This research introduces a novel real-time deepfake video detection framework by analyzing gaze and blink patterns,addressing the spatial-temporal challenges unique to gaze and blink anomalies using the TimeSformer and hybrid Transformer-CNN models.The TimeSformer architecture leverages spatial-temporal attention mechanisms to capture fine-grained blinking intervals and gaze direction anomalies.Compared to state-of-the-art traditional convolutional models like MesoNet and EfficientNet,which primarily focus on global facial features,our approach emphasizes localized eye-region analysis,significantly enhancing detection accuracy.We evaluate our framework on four standard datasets:FaceForensics,CelebDF-V2,DFDC,and FakeAVCeleb.The proposed framework results reveal higher accuracy,with the TimeSformer model achieving accuracies of 97.5%,96.3%,95.8%,and 97.1%,and with the hybrid Transformer-CNN model demonstrating accuracies of 92.8%,91.5%,90.9%,and 93.2%,on FaceForensics,CelebDF-V2,DFDC,and FakeAVCeleb datasets,respectively,showing robustness in distinguishing manipulated from authentic videos.Our research provides a robust state-of-the-art framework for real-time deepfake video detection.This novel study significantly contributes to video forensics,presenting scalable and accurate real-world application solutions.
基金National Basic Research Program of China (No. 2006CB102104)National Natural Sci-ences Foundation of China (No. 30430500).
文摘Escherichia coli expressing F4 fimbriae is the major pathogenic bacteria that causes diarrhea in piglets before weaning. The adhesion of E. coli to the brush borders of the epithelial cells of piglets is the precondition leading to diarrhea, which in turn is due to the presence of the F4 receptors determined by an autosomal recessive gene on the brush borders of the epithelial cells. In order to clarify the genetic mechanism of the adhesion, an in vitro adhesion experiment was carded out for three variants of E. coli F4 (ab, ac, and ad) in 366 piglets of three pig breeds [Landrace (LR), Large White (LW), and Songliao Black (SB)]. The results showed that there existed significant differences (P〈0.001) in the adhesion percentage among the three breeds. Most SB piglets were nonadhesive for all the three variants, whereas most LR piglets were adhesive. Within each breed except for LR, the proportions of the three F4 variants adhering to the brush borders differed significantly. According to the patterns of the adhesion of the three F4 variants in the three breeds, it is very likely that the three F4 variants F4ab, F4ac, and F4ad have different receptors that are controlled by three different loci.
基金supported by the Genetically Modified Organisms Breeding Major Projects, Ministry of Agriculture, China (2008ZX0810-001)
文摘The transcription factors, including OCT4, NANOG, and SOX2, played crucial roles in the maintenance of self-renewal and pluripotency in embryonic stem cells (ESCs). They expressed in preimplantation mammalian development with spa- tio-temporal pattern and took part in regulation of development. However, their expression and roles in goat had not been reported. In the present study, the expression of OCT4, NANOG, and SOX2 in goat preimplantation embryos both in vivo and in vitro were detected by real-time RCR and immunofluorescence. For in vivo fertilized embryos, the transcripts of OCT4, NANOG, and SOX2 could be detected from oocytes to blastocyst stage, their expression in morula and blastocyst stages was much higher than other stage. OCT4 protein was detected from oocyte to blastocyst, but the fluorescence was more located-intensive with nuclei from 8-cell stage, its expression present in both inner cell mass (ICM) and trophoblast cells (TE) at blastocyse stage. NANOG protein was similar to OCT4, the signaling of fluorescence completely focused on cell nuclei, while the SOX2 firstly showed nuclei location in morula. Comparing to in vivo fertilized embryo, the mRNA of these three transcription factors could be detected at 8-cell stage in parthenogenetic embryos (in vitro). Thereafter, the expressional level rose gradually along with embryo development. The locations of OCT4 and NANOG proteins were similar to in vivo fertilized embryos, and they located in cell nuclei from morula to blastocyst stage, while SOX2 protein firstly could be detected in cell nuclei at 8-cell stage. These differences suggested that OCT4, NANOG, and SOX2 played different function in regulating development of goat preimplantation embryos. These results may provide a novel insight to goat embryo development and be useful for goat ESCs isolation.
基金Supported by the Scientific Equipment Research Program of Chinese Academy of Sciences under Grant No 2014Y4201449
文摘We report the fabrication of 4-inch nano patterned wafer by two-beam laser interference lithography and analyze the uniformity in detail. The profile of the dots array with a period of 800 nm divided into five regions is characterized by a scanning electron microscope. The average size in each region ranges from 270 nm to 320 nm,and the deviation is almost 4%, which is approaching the applicable value of 3% in the industrial process. We simulate the two-beam laser interference lithography system with MATLAB software and then calculate the distribution of light intensity around the 4 inch area. The experimental data fit very well with the calculated results. Analysis of the experimental data and calculated data indicates that laser beam quality and space filter play important roles in achieving a periodical nanoscale pattern with high uniformity and large area. There is the potential to obtain more practical applications.
文摘In cooperation with figure-of-merits the Rietveld analysis can appraise both angular and intensity data of powder diffraction. In this work, X-ray diffraction pattern of Bi4(SiO4)3 was redetermined with intensity figure-of-merits, which qualify agreement between observed and calculated relative intensities. F30 is 158.90 (0.0059, 32), intensity figure of merit Rint is 8.7, I20(17), 8.0. The values of figure-of-merits show that the data of JCPDS cards are distorted. Both the experimental and calculated peak positions and heights are listed in detail.