Objective In this study, the pharmacological kinetics of Buthus martensi Karsch (BmK) AS, a specific modulator of voltage-gated sodium channel site 4, was investigated on Nav1.3 expressed in Xenopus oocytes. Methods...Objective In this study, the pharmacological kinetics of Buthus martensi Karsch (BmK) AS, a specific modulator of voltage-gated sodium channel site 4, was investigated on Nav1.3 expressed in Xenopus oocytes. Methods Two-electrode voltage clamp was used to record the whole-cell sodium current. Results The peak currents of Nav1.3 were depressed by BmK AS over a wide range of concentrations (10, 100, and 500 nmol/L). Most remarkably, BmK AS at 100 nmol/L hyperpolarized the voltage-dependence and increased the voltage-sensitivity of steady-state activation/inactivation. In addition, BmK AS was capable of hyperpolarizing not only the fast inactivation but also the slow inactivation, with a greater preference for the latter. Moreover, BmK AS accelerated the time constant and increased the ratio of recovery in Nav1.3 at all concentrations. Conclusion This study provides direct evidence that BmK AS facilitates steady-state activation and inhibits slow inactivation by stabilizing both the closed and open states of the Nav1.3 channel, which might result from an integrative binding to two receptor sites on the voltage-gated sodium channels. These results may shed light on therapeutics against Nav1.3-targeted pathology.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)is a common malignancy worldwide,and the mortality rate continues to rise each year.SMARCA4 expression has been associated with poor prognosis in various types of cancer;however...BACKGROUND Hepatocellular carcinoma(HCC)is a common malignancy worldwide,and the mortality rate continues to rise each year.SMARCA4 expression has been associated with poor prognosis in various types of cancer;however,the specific mechanism of action of SMARCA4 in HCC needs to be fully elucidated.AIM To explore the specific mechanism of action of SMARCA4 in HCC.METHODS Herein,the expression level of SMARCA4 as well as its association with HCC prognosis were evaluated using transcriptome profiling and clinical data of 18 different types of cancer collected from The Cancer Genome Atlas database.Furthermore,SMARCA4-high and-low groups were identified.Thereafter,gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to identify the function of SMARCA4,followed by construction of a SMARCA4-specific competing endogenous RNA(ceRNA)network using starBase database.The role of SMARCA4 in immunotherapy and its association with immune cells were assessed using correlation analysis.RESULTS It was observed that SMARCA4 was overexpressed and negatively correlated with prognosis in HCC.Further,SMARCA4 expression was positively associated with tumor mutational burden,microsatellite stability,and immunotherapy efficacy.The SNHG3/THUMP3-AS1-miR-139-5p-SMARCA4 ceRNA network was established and could be assumed to serve as a stimulatory mechanism in HCC.CONCLUSION The findings of this study demonstrated that SMARCA4 plays a significant role in progression and immune infiltration in HCC.Moreover,a ceRNA network was detected,which was found to be correlated with poor prognosis in HCC.The findings of this study could contribute towards the identification of predictive markers for immunotherapy and a novel mechanism of action for HCC treatment.展开更多
Background:Liver diseases are a major contributor to both morbidity and mortality.Conditional knockout animals are always produced through crossing floxed animals with a tissue-specific Cre animal.The use of floxed ra...Background:Liver diseases are a major contributor to both morbidity and mortality.Conditional knockout animals are always produced through crossing floxed animals with a tissue-specific Cre animal.The use of floxed rat resource has rapidly increased,but the liver-specific Cre rat lines for studying liver diseases and interested genes are limited,especially in a spatially and temporally restricted manner.Methods:RNA sequencing and real-time polymerase chain reaction(PCR)were used to screen and confirm the presence of liver-specific genes.Apoa4-Cre rats and Cyp2c11-Cre rats were produced by CRISPR/Cas9 knockin.Rosa26-imCherry rats were employed to hybridize with the Cre rats to obtain the Apoa4-Cre/Rosa26-imCherry and Cyp2c11-Cre/Rosa26-imCherry rats.The temporal and spatial patterns of Cre expression were determined by the observation of red fluorescence on tis-sue sections.Hematoxylin-eosin stain was used to evaluate the liver histopathologic changes.The blood biochemical analysis of several liver enzymes and liver lipid profile was performed to evaluate the liver function of Cre rats.Results:Apoa4 and Cyp2c11 were identified as two liver-specific genes.Apoa4-Cre and Cyp2c11-Cre rats were produced and hybridized with Rosa26-imCherry rats.The red fluorescence indicated that the Cre recombinases were specially expressed in the juvenile and adult liver and not in other organs of two hybridized rats.All the blood biochemical parameters except low-density lipoprotein(LDL)did not change signifi-cantly in the Cre rats.No histological alterations were detected in the livers of the Cre rats.Conclusions:Liver-specific Apoa4-Cre and Cyp2c11-Cre rats have been established successfully and could be used to study gene knockout,specifically in juvenile and adult liver.展开更多
采用Co_(3)O_(4)吸附脱除模拟柴油中的喹啉、吡啶或苯胺,考察了最佳吸附温度、吸附时间等条件,同时进行了吸附热力学和动力学研究;基于第一性原理对Co_(3)O_(4)晶胞进行相分析,对3种氮化物进行最高占据分子轨道(HOMO)-最低未占据分子轨...采用Co_(3)O_(4)吸附脱除模拟柴油中的喹啉、吡啶或苯胺,考察了最佳吸附温度、吸附时间等条件,同时进行了吸附热力学和动力学研究;基于第一性原理对Co_(3)O_(4)晶胞进行相分析,对3种氮化物进行最高占据分子轨道(HOMO)-最低未占据分子轨道(LUMO)分析,计算了吸附构型的吸附能和最稳定吸附构型的Mulliken电荷转移与电子密度。结果表明:在15 mL模拟柴油中加入0.6 g Co_(3)O_(4),苯胺、吡啶、喹啉的最佳吸附温度分别为20、20和30℃,最佳吸附时间分别为30、30、40 min,吸附容量由大到小顺序均为苯胺>吡啶>喹啉。热力学与动力学分析表明,喹啉、吡啶、苯胺的吸附均更符合多分子层吸附的Freundlich模型和准二级动力学方程。HOMO-LUMO分析结果表明,Co_(3)O_(4)为电子接受体,3种氮化物为电子给予体,Co_(3)O_(4)对喹啉、吡啶的配位吸附结构最稳定,对苯胺的π络合吸附最稳定。电荷转移计算表明,苯胺、吡啶、喹啉向Co_(3)O_(4)团簇转移的电荷数分别为0.423、0.394、0.368,说明Co_(3)O_(4)吸附3种氮化物的吸附能力大小为苯胺>吡啶>喹啉;电子密度图结果表明,最稳定吸附结构中Co_(3)O_(4)与3种氮化物均形成了化学键。展开更多
Despite the advent of biological products, such as anti-tumor necrosis factor-α monoclonal antibodies (infliximab and adalimumab), for treatment of moderate to severe cases of inflammatory bowel disease (I...Despite the advent of biological products, such as anti-tumor necrosis factor-α monoclonal antibodies (infliximab and adalimumab), for treatment of moderate to severe cases of inflammatory bowel disease (IBD), most patients depend upon aminosalicylates as the conventional treatment option. In recent years, the increased knowledge of complex pathophysiological processes underlying IBD has resulted in development of a number of newer pharmaceutical agents like low-molecular-weight heparin, omega-3 fatty acids, probiotics and innovative formulations such as high-dose, once-daily multi-matrix mesalamine, which are designed to minimize the inflammatory process through inhibition of different targets. Optimization of delivery of existing drugs to the colon using the prodrug approach is another attractive alternative that has been utilized and commercialized for 5-aminosalicylic acid (ASA) in the form of sulfasalazine, balsalazide, olsalazine and ipsalazine, but rarely for its positional isomer 4-ASA - a well-established antitubercular drug that is twice as potent as 5-ASA against IBD, and more specifically, ulcerative colitis. The present review focuses on the complete profile of 4-ASA and its advantages over 5-ASA and colon-targeting prodrugs reported so far for the management of IBD. The review also emphasizes the need for reappraisal of this promising but unexplored entity as a potential treatment option for IBD.展开更多
基金supported by grants from the National Basic Research Development Program of China (2010CB529806)the National Natural Science Foundation of China (31171064)+1 种基金the Key Research Program of Science and Technology Commissions of Shanghai Municipality (11JC1404300)the Leading Academic Discipline Project of Shanghai Municipal Education Commission (J50108)
文摘Objective In this study, the pharmacological kinetics of Buthus martensi Karsch (BmK) AS, a specific modulator of voltage-gated sodium channel site 4, was investigated on Nav1.3 expressed in Xenopus oocytes. Methods Two-electrode voltage clamp was used to record the whole-cell sodium current. Results The peak currents of Nav1.3 were depressed by BmK AS over a wide range of concentrations (10, 100, and 500 nmol/L). Most remarkably, BmK AS at 100 nmol/L hyperpolarized the voltage-dependence and increased the voltage-sensitivity of steady-state activation/inactivation. In addition, BmK AS was capable of hyperpolarizing not only the fast inactivation but also the slow inactivation, with a greater preference for the latter. Moreover, BmK AS accelerated the time constant and increased the ratio of recovery in Nav1.3 at all concentrations. Conclusion This study provides direct evidence that BmK AS facilitates steady-state activation and inhibits slow inactivation by stabilizing both the closed and open states of the Nav1.3 channel, which might result from an integrative binding to two receptor sites on the voltage-gated sodium channels. These results may shed light on therapeutics against Nav1.3-targeted pathology.
文摘BACKGROUND Hepatocellular carcinoma(HCC)is a common malignancy worldwide,and the mortality rate continues to rise each year.SMARCA4 expression has been associated with poor prognosis in various types of cancer;however,the specific mechanism of action of SMARCA4 in HCC needs to be fully elucidated.AIM To explore the specific mechanism of action of SMARCA4 in HCC.METHODS Herein,the expression level of SMARCA4 as well as its association with HCC prognosis were evaluated using transcriptome profiling and clinical data of 18 different types of cancer collected from The Cancer Genome Atlas database.Furthermore,SMARCA4-high and-low groups were identified.Thereafter,gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to identify the function of SMARCA4,followed by construction of a SMARCA4-specific competing endogenous RNA(ceRNA)network using starBase database.The role of SMARCA4 in immunotherapy and its association with immune cells were assessed using correlation analysis.RESULTS It was observed that SMARCA4 was overexpressed and negatively correlated with prognosis in HCC.Further,SMARCA4 expression was positively associated with tumor mutational burden,microsatellite stability,and immunotherapy efficacy.The SNHG3/THUMP3-AS1-miR-139-5p-SMARCA4 ceRNA network was established and could be assumed to serve as a stimulatory mechanism in HCC.CONCLUSION The findings of this study demonstrated that SMARCA4 plays a significant role in progression and immune infiltration in HCC.Moreover,a ceRNA network was detected,which was found to be correlated with poor prognosis in HCC.The findings of this study could contribute towards the identification of predictive markers for immunotherapy and a novel mechanism of action for HCC treatment.
基金CAMS Innovation Fund for Medical Sciences(CIFMS),Grant/Award Number:2021-I2M-1-035National Natural Science Foundation of China,Grant/Award Number:31970508。
文摘Background:Liver diseases are a major contributor to both morbidity and mortality.Conditional knockout animals are always produced through crossing floxed animals with a tissue-specific Cre animal.The use of floxed rat resource has rapidly increased,but the liver-specific Cre rat lines for studying liver diseases and interested genes are limited,especially in a spatially and temporally restricted manner.Methods:RNA sequencing and real-time polymerase chain reaction(PCR)were used to screen and confirm the presence of liver-specific genes.Apoa4-Cre rats and Cyp2c11-Cre rats were produced by CRISPR/Cas9 knockin.Rosa26-imCherry rats were employed to hybridize with the Cre rats to obtain the Apoa4-Cre/Rosa26-imCherry and Cyp2c11-Cre/Rosa26-imCherry rats.The temporal and spatial patterns of Cre expression were determined by the observation of red fluorescence on tis-sue sections.Hematoxylin-eosin stain was used to evaluate the liver histopathologic changes.The blood biochemical analysis of several liver enzymes and liver lipid profile was performed to evaluate the liver function of Cre rats.Results:Apoa4 and Cyp2c11 were identified as two liver-specific genes.Apoa4-Cre and Cyp2c11-Cre rats were produced and hybridized with Rosa26-imCherry rats.The red fluorescence indicated that the Cre recombinases were specially expressed in the juvenile and adult liver and not in other organs of two hybridized rats.All the blood biochemical parameters except low-density lipoprotein(LDL)did not change signifi-cantly in the Cre rats.No histological alterations were detected in the livers of the Cre rats.Conclusions:Liver-specific Apoa4-Cre and Cyp2c11-Cre rats have been established successfully and could be used to study gene knockout,specifically in juvenile and adult liver.
文摘采用Co_(3)O_(4)吸附脱除模拟柴油中的喹啉、吡啶或苯胺,考察了最佳吸附温度、吸附时间等条件,同时进行了吸附热力学和动力学研究;基于第一性原理对Co_(3)O_(4)晶胞进行相分析,对3种氮化物进行最高占据分子轨道(HOMO)-最低未占据分子轨道(LUMO)分析,计算了吸附构型的吸附能和最稳定吸附构型的Mulliken电荷转移与电子密度。结果表明:在15 mL模拟柴油中加入0.6 g Co_(3)O_(4),苯胺、吡啶、喹啉的最佳吸附温度分别为20、20和30℃,最佳吸附时间分别为30、30、40 min,吸附容量由大到小顺序均为苯胺>吡啶>喹啉。热力学与动力学分析表明,喹啉、吡啶、苯胺的吸附均更符合多分子层吸附的Freundlich模型和准二级动力学方程。HOMO-LUMO分析结果表明,Co_(3)O_(4)为电子接受体,3种氮化物为电子给予体,Co_(3)O_(4)对喹啉、吡啶的配位吸附结构最稳定,对苯胺的π络合吸附最稳定。电荷转移计算表明,苯胺、吡啶、喹啉向Co_(3)O_(4)团簇转移的电荷数分别为0.423、0.394、0.368,说明Co_(3)O_(4)吸附3种氮化物的吸附能力大小为苯胺>吡啶>喹啉;电子密度图结果表明,最稳定吸附结构中Co_(3)O_(4)与3种氮化物均形成了化学键。
文摘Despite the advent of biological products, such as anti-tumor necrosis factor-α monoclonal antibodies (infliximab and adalimumab), for treatment of moderate to severe cases of inflammatory bowel disease (IBD), most patients depend upon aminosalicylates as the conventional treatment option. In recent years, the increased knowledge of complex pathophysiological processes underlying IBD has resulted in development of a number of newer pharmaceutical agents like low-molecular-weight heparin, omega-3 fatty acids, probiotics and innovative formulations such as high-dose, once-daily multi-matrix mesalamine, which are designed to minimize the inflammatory process through inhibition of different targets. Optimization of delivery of existing drugs to the colon using the prodrug approach is another attractive alternative that has been utilized and commercialized for 5-aminosalicylic acid (ASA) in the form of sulfasalazine, balsalazide, olsalazine and ipsalazine, but rarely for its positional isomer 4-ASA - a well-established antitubercular drug that is twice as potent as 5-ASA against IBD, and more specifically, ulcerative colitis. The present review focuses on the complete profile of 4-ASA and its advantages over 5-ASA and colon-targeting prodrugs reported so far for the management of IBD. The review also emphasizes the need for reappraisal of this promising but unexplored entity as a potential treatment option for IBD.