Polymerization of 2-(4-halophenyl)-1,3-butadiene(2-XPB) and their copolymerization with isoprene using a yttrium catalyst have been examined. The β-diketiminato yttrium bis(alkyl) complex(1) activated by [Ph_3 C][B(C...Polymerization of 2-(4-halophenyl)-1,3-butadiene(2-XPB) and their copolymerization with isoprene using a yttrium catalyst have been examined. The β-diketiminato yttrium bis(alkyl) complex(1) activated by [Ph_3 C][B(C_(6) F_(5))_(4)] and Ali Bu3 shows high cis-1,4-selectivity(>98%) for the polymerization of 2-XPB(2-XPB = 2-FPB, 2-Cl PB and 2-Br PB) to afford halogenated plastic poly(dienes) with glass transition temperatures of30–55 ℃. Moreover, the copolymerization of 2-XPB with isoprene(IP) has also been achieved by this catalyst, and the insertion ratios of 2-XPB can be facilely tuned in a full range of 0%–100% simply by changing the 2-XPB-to-IP ratio. Quantitative hydrogenation of cis-1,4-poly(2-XPB) results in perfect alternating ethylene-halostyrene copolymers, and an alternating copolymer of 4-vinylbenzoic acid with ethylene is obtained by a consecutive reaction of ethylene-4-bromostyrene copolymer with ^(n)Bu Li, CO_(2) and HCl.展开更多
CuBi_(2)O_(4)is identified as a promising photocathode in photoelectrochemical(PEC)water splitting systems.However,the PEC performance of CuBi_(2)O_(4)is far from expected due to the limited separation and transport e...CuBi_(2)O_(4)is identified as a promising photocathode in photoelectrochemical(PEC)water splitting systems.However,the PEC performance of CuBi_(2)O_(4)is far from expected due to the limited separation and transport efficiency of photogenerated carriers.To address the above issues,a cost-effective ternary Cu:NiO_(X)/CuBi_(2)O_(4)/CuO composite photocathode was designed.Firstly,a thin Cu:NiO_(X)film was inserted between CuBi_(2)O_(4)and FTO conducting substrate as a hole-selective layer,which promotes the transmission of photogenerated holes to the FTO substrate effectively.Furthermore,the modification of CuO film on the CuBi_(2)O_(4)electrode not only increases the absorption of sunlight and generates more photogenerated carriers,but also constitutes a heterojunction with CuBi_(2)O_(4),creating a built-in electric field,which facilitates the separation of electrons and holes,and accelerates the electrons transfer to electrode–electrolyte interface.The fabricated Cu:NiO_(X)/CuBi_(2)O_(4)/CuO composite photocathode exhibits a surprisingly high photocurrent density of−1.51 mA·cm^(−2)at 0.4 V versus RHE,which is 2.6 times that of the pristine CuBi_(2)O_(4)photocathode.The improved PEC performance is attributed to the synergy effect of the Cu:NiO_(X)hole-selective layer and the CuBi_(2)O_(4)/CuO heterojunction.Moreover,the combination with the BiVO_(4)/CoS,an unbiased overall water splitting was achieved,which has a photocurrent of 0.193 mA·cm^(−2).展开更多
采用Co_(3)O_(4)吸附脱除模拟柴油中的喹啉、吡啶或苯胺,考察了最佳吸附温度、吸附时间等条件,同时进行了吸附热力学和动力学研究;基于第一性原理对Co_(3)O_(4)晶胞进行相分析,对3种氮化物进行最高占据分子轨道(HOMO)-最低未占据分子轨...采用Co_(3)O_(4)吸附脱除模拟柴油中的喹啉、吡啶或苯胺,考察了最佳吸附温度、吸附时间等条件,同时进行了吸附热力学和动力学研究;基于第一性原理对Co_(3)O_(4)晶胞进行相分析,对3种氮化物进行最高占据分子轨道(HOMO)-最低未占据分子轨道(LUMO)分析,计算了吸附构型的吸附能和最稳定吸附构型的Mulliken电荷转移与电子密度。结果表明:在15 mL模拟柴油中加入0.6 g Co_(3)O_(4),苯胺、吡啶、喹啉的最佳吸附温度分别为20、20和30℃,最佳吸附时间分别为30、30、40 min,吸附容量由大到小顺序均为苯胺>吡啶>喹啉。热力学与动力学分析表明,喹啉、吡啶、苯胺的吸附均更符合多分子层吸附的Freundlich模型和准二级动力学方程。HOMO-LUMO分析结果表明,Co_(3)O_(4)为电子接受体,3种氮化物为电子给予体,Co_(3)O_(4)对喹啉、吡啶的配位吸附结构最稳定,对苯胺的π络合吸附最稳定。电荷转移计算表明,苯胺、吡啶、喹啉向Co_(3)O_(4)团簇转移的电荷数分别为0.423、0.394、0.368,说明Co_(3)O_(4)吸附3种氮化物的吸附能力大小为苯胺>吡啶>喹啉;电子密度图结果表明,最稳定吸附结构中Co_(3)O_(4)与3种氮化物均形成了化学键。展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 21634007 and 51773193)the Department of Science and Technology of Jilin Province(No. 20180101171JC)。
文摘Polymerization of 2-(4-halophenyl)-1,3-butadiene(2-XPB) and their copolymerization with isoprene using a yttrium catalyst have been examined. The β-diketiminato yttrium bis(alkyl) complex(1) activated by [Ph_3 C][B(C_(6) F_(5))_(4)] and Ali Bu3 shows high cis-1,4-selectivity(>98%) for the polymerization of 2-XPB(2-XPB = 2-FPB, 2-Cl PB and 2-Br PB) to afford halogenated plastic poly(dienes) with glass transition temperatures of30–55 ℃. Moreover, the copolymerization of 2-XPB with isoprene(IP) has also been achieved by this catalyst, and the insertion ratios of 2-XPB can be facilely tuned in a full range of 0%–100% simply by changing the 2-XPB-to-IP ratio. Quantitative hydrogenation of cis-1,4-poly(2-XPB) results in perfect alternating ethylene-halostyrene copolymers, and an alternating copolymer of 4-vinylbenzoic acid with ethylene is obtained by a consecutive reaction of ethylene-4-bromostyrene copolymer with ^(n)Bu Li, CO_(2) and HCl.
基金supported by the National Natural Science Foundation of China(No.61804039)the University Natural Sciences Research Project of Anhui Province(No.2022AH010096)+1 种基金the Talent Research Fund of Hefei University(No.20RC35)the Natural Science Foundation of Anhui Higher Education Institution of China(No.2023AH040160).
文摘CuBi_(2)O_(4)is identified as a promising photocathode in photoelectrochemical(PEC)water splitting systems.However,the PEC performance of CuBi_(2)O_(4)is far from expected due to the limited separation and transport efficiency of photogenerated carriers.To address the above issues,a cost-effective ternary Cu:NiO_(X)/CuBi_(2)O_(4)/CuO composite photocathode was designed.Firstly,a thin Cu:NiO_(X)film was inserted between CuBi_(2)O_(4)and FTO conducting substrate as a hole-selective layer,which promotes the transmission of photogenerated holes to the FTO substrate effectively.Furthermore,the modification of CuO film on the CuBi_(2)O_(4)electrode not only increases the absorption of sunlight and generates more photogenerated carriers,but also constitutes a heterojunction with CuBi_(2)O_(4),creating a built-in electric field,which facilitates the separation of electrons and holes,and accelerates the electrons transfer to electrode–electrolyte interface.The fabricated Cu:NiO_(X)/CuBi_(2)O_(4)/CuO composite photocathode exhibits a surprisingly high photocurrent density of−1.51 mA·cm^(−2)at 0.4 V versus RHE,which is 2.6 times that of the pristine CuBi_(2)O_(4)photocathode.The improved PEC performance is attributed to the synergy effect of the Cu:NiO_(X)hole-selective layer and the CuBi_(2)O_(4)/CuO heterojunction.Moreover,the combination with the BiVO_(4)/CoS,an unbiased overall water splitting was achieved,which has a photocurrent of 0.193 mA·cm^(−2).
文摘采用Co_(3)O_(4)吸附脱除模拟柴油中的喹啉、吡啶或苯胺,考察了最佳吸附温度、吸附时间等条件,同时进行了吸附热力学和动力学研究;基于第一性原理对Co_(3)O_(4)晶胞进行相分析,对3种氮化物进行最高占据分子轨道(HOMO)-最低未占据分子轨道(LUMO)分析,计算了吸附构型的吸附能和最稳定吸附构型的Mulliken电荷转移与电子密度。结果表明:在15 mL模拟柴油中加入0.6 g Co_(3)O_(4),苯胺、吡啶、喹啉的最佳吸附温度分别为20、20和30℃,最佳吸附时间分别为30、30、40 min,吸附容量由大到小顺序均为苯胺>吡啶>喹啉。热力学与动力学分析表明,喹啉、吡啶、苯胺的吸附均更符合多分子层吸附的Freundlich模型和准二级动力学方程。HOMO-LUMO分析结果表明,Co_(3)O_(4)为电子接受体,3种氮化物为电子给予体,Co_(3)O_(4)对喹啉、吡啶的配位吸附结构最稳定,对苯胺的π络合吸附最稳定。电荷转移计算表明,苯胺、吡啶、喹啉向Co_(3)O_(4)团簇转移的电荷数分别为0.423、0.394、0.368,说明Co_(3)O_(4)吸附3种氮化物的吸附能力大小为苯胺>吡啶>喹啉;电子密度图结果表明,最稳定吸附结构中Co_(3)O_(4)与3种氮化物均形成了化学键。