采用Co_(3)O_(4)吸附脱除模拟柴油中的喹啉、吡啶或苯胺,考察了最佳吸附温度、吸附时间等条件,同时进行了吸附热力学和动力学研究;基于第一性原理对Co_(3)O_(4)晶胞进行相分析,对3种氮化物进行最高占据分子轨道(HOMO)-最低未占据分子轨...采用Co_(3)O_(4)吸附脱除模拟柴油中的喹啉、吡啶或苯胺,考察了最佳吸附温度、吸附时间等条件,同时进行了吸附热力学和动力学研究;基于第一性原理对Co_(3)O_(4)晶胞进行相分析,对3种氮化物进行最高占据分子轨道(HOMO)-最低未占据分子轨道(LUMO)分析,计算了吸附构型的吸附能和最稳定吸附构型的Mulliken电荷转移与电子密度。结果表明:在15 mL模拟柴油中加入0.6 g Co_(3)O_(4),苯胺、吡啶、喹啉的最佳吸附温度分别为20、20和30℃,最佳吸附时间分别为30、30、40 min,吸附容量由大到小顺序均为苯胺>吡啶>喹啉。热力学与动力学分析表明,喹啉、吡啶、苯胺的吸附均更符合多分子层吸附的Freundlich模型和准二级动力学方程。HOMO-LUMO分析结果表明,Co_(3)O_(4)为电子接受体,3种氮化物为电子给予体,Co_(3)O_(4)对喹啉、吡啶的配位吸附结构最稳定,对苯胺的π络合吸附最稳定。电荷转移计算表明,苯胺、吡啶、喹啉向Co_(3)O_(4)团簇转移的电荷数分别为0.423、0.394、0.368,说明Co_(3)O_(4)吸附3种氮化物的吸附能力大小为苯胺>吡啶>喹啉;电子密度图结果表明,最稳定吸附结构中Co_(3)O_(4)与3种氮化物均形成了化学键。展开更多
This paper presents new generalizations of the Hermite-Hadamard inequality for convex functions via(p,q)-quantum integrals.First,based on the definitions of(p,q)-derivatives and integrals over finite intervals,we esta...This paper presents new generalizations of the Hermite-Hadamard inequality for convex functions via(p,q)-quantum integrals.First,based on the definitions of(p,q)-derivatives and integrals over finite intervals,we establish a unified(p,q)-Hermite-Hadamard inequality framework,combining midpoint-type and trapezoidal-type inequalities into a single form.Furthermore,by introducing a parameterλ,we propose a generalized(p,q)-integral inequality,whose special cases reduce to classical quantum Hermite-Hadamard inequalities and existing results in the literature.Furthermore,using hybrid integral techniques,we construct refined inequalities that incorporate(p,q)-integral terms,and by adjustingλ,we demonstrate their improvements and extensions to known inequalities.Specific examples are provided to validate the applicability of the results.The findings indicate that the proposed(p,q)-integral approach offers more flexible mathematical tools for the estimation of numerical integration error,convex optimization problems,and analysis of system performance in control theory,thus enriching the research results of quantum calculus in the field of inequalities.展开更多
文摘采用Co_(3)O_(4)吸附脱除模拟柴油中的喹啉、吡啶或苯胺,考察了最佳吸附温度、吸附时间等条件,同时进行了吸附热力学和动力学研究;基于第一性原理对Co_(3)O_(4)晶胞进行相分析,对3种氮化物进行最高占据分子轨道(HOMO)-最低未占据分子轨道(LUMO)分析,计算了吸附构型的吸附能和最稳定吸附构型的Mulliken电荷转移与电子密度。结果表明:在15 mL模拟柴油中加入0.6 g Co_(3)O_(4),苯胺、吡啶、喹啉的最佳吸附温度分别为20、20和30℃,最佳吸附时间分别为30、30、40 min,吸附容量由大到小顺序均为苯胺>吡啶>喹啉。热力学与动力学分析表明,喹啉、吡啶、苯胺的吸附均更符合多分子层吸附的Freundlich模型和准二级动力学方程。HOMO-LUMO分析结果表明,Co_(3)O_(4)为电子接受体,3种氮化物为电子给予体,Co_(3)O_(4)对喹啉、吡啶的配位吸附结构最稳定,对苯胺的π络合吸附最稳定。电荷转移计算表明,苯胺、吡啶、喹啉向Co_(3)O_(4)团簇转移的电荷数分别为0.423、0.394、0.368,说明Co_(3)O_(4)吸附3种氮化物的吸附能力大小为苯胺>吡啶>喹啉;电子密度图结果表明,最稳定吸附结构中Co_(3)O_(4)与3种氮化物均形成了化学键。
文摘This paper presents new generalizations of the Hermite-Hadamard inequality for convex functions via(p,q)-quantum integrals.First,based on the definitions of(p,q)-derivatives and integrals over finite intervals,we establish a unified(p,q)-Hermite-Hadamard inequality framework,combining midpoint-type and trapezoidal-type inequalities into a single form.Furthermore,by introducing a parameterλ,we propose a generalized(p,q)-integral inequality,whose special cases reduce to classical quantum Hermite-Hadamard inequalities and existing results in the literature.Furthermore,using hybrid integral techniques,we construct refined inequalities that incorporate(p,q)-integral terms,and by adjustingλ,we demonstrate their improvements and extensions to known inequalities.Specific examples are provided to validate the applicability of the results.The findings indicate that the proposed(p,q)-integral approach offers more flexible mathematical tools for the estimation of numerical integration error,convex optimization problems,and analysis of system performance in control theory,thus enriching the research results of quantum calculus in the field of inequalities.