The 4TPS-PS parallel platform designed for a stabilization and automatic tracking system is a novel lower-mobility parallel mechanism. In the first part of this paper, the structure of the platform is described and th...The 4TPS-PS parallel platform designed for a stabilization and automatic tracking system is a novel lower-mobility parallel mechanism. In the first part of this paper, the structure of the platform is described and the kinematics model is built. The workspace of the platform is defined as the full reachable rotation workspace when the Z coordinate dimension of the upper plate varies continuously. A fast searching method of the full reachable workspace is presented, after which the inverse kinematics of the platform is deduced. The forward and inverse solutions of the speed and force of the platform are deduced. According to the characteristic of the 4TPS-PS platform’s structure, a fast searching algorithm of the maximum generalized speed and maximum generalized force output by the upper plate is put forward based on the forward and inverse solutions of the platform’s speed and force. The 4TPS-PS platform prototype built by the State Key Laboratory of Fluid Power Transmission and Control of China is taken as the research subject. The full reachable rotation workspace of the prototype is computed out and analyzed. The curves of maximum generalized speed and maximum generalized force of the prototype are computed out and plotted. Finally, the com- puting and analyzing results of the operating characteristics are confirmed through the experiment.展开更多
This paper studies motor joint control of a 4-degree-of-freedom(DoF)robotic manipulator using learning-based Adaptive Dynamic Programming(ADP)approach.The manipulator’s dynamics are modelled as an open-loop 4-link se...This paper studies motor joint control of a 4-degree-of-freedom(DoF)robotic manipulator using learning-based Adaptive Dynamic Programming(ADP)approach.The manipulator’s dynamics are modelled as an open-loop 4-link serial kinematic chain with 4 Degrees of Freedom(DoF).Decentralised optimal controllers are designed for each link using ADP approach based on a set of cost matrices and data collected from exploration trajectories.The proposed control strategy employs an off-line,off-policy iterative approach to derive four optimal control policies,one for each joint,under exploration strategies.The objective of the controller is to control the position of each joint.Simulation and experimental results show that four independent optimal controllers are found,each under similar exploration strategies,and the proposed ADP approach successfully yields optimal linear control policies despite the presence of these complexities.The experimental results conducted on the Quanser Qarm robotic platform demonstrate the effectiveness of the proposed ADP controllers in handling significant dynamic nonlinearities,such as actuation limitations,output saturation,and filter delays.展开更多
The S-type test is simulated based on a ship manoeuvring mathematical model of 4 degrees of freedom(4-DOF);simultaneously,sensitivity analysis of the hydrodynamic coefficients in the mathematical model is implemented ...The S-type test is simulated based on a ship manoeuvring mathematical model of 4 degrees of freedom(4-DOF);simultaneously,sensitivity analysis of the hydrodynamic coefficients in the mathematical model is implemented by using an indirect method.The mathematical model is simplified by omitting the coefficients of smaller sensitivity according to the results of sensitivity analysis.The 10°/10° zigzag test and 35° turning circle manoeuvre are simulated with the original and the simplified mathematical models.The comparison of the simulation results shows the effectiveness of the sensitivity analysis and the validity of the simplified model.展开更多
基金Project (No. 50375139) supported by the National Natural Science Foundation of China
文摘The 4TPS-PS parallel platform designed for a stabilization and automatic tracking system is a novel lower-mobility parallel mechanism. In the first part of this paper, the structure of the platform is described and the kinematics model is built. The workspace of the platform is defined as the full reachable rotation workspace when the Z coordinate dimension of the upper plate varies continuously. A fast searching method of the full reachable workspace is presented, after which the inverse kinematics of the platform is deduced. The forward and inverse solutions of the speed and force of the platform are deduced. According to the characteristic of the 4TPS-PS platform’s structure, a fast searching algorithm of the maximum generalized speed and maximum generalized force output by the upper plate is put forward based on the forward and inverse solutions of the platform’s speed and force. The 4TPS-PS platform prototype built by the State Key Laboratory of Fluid Power Transmission and Control of China is taken as the research subject. The full reachable rotation workspace of the prototype is computed out and analyzed. The curves of maximum generalized speed and maximum generalized force of the prototype are computed out and plotted. Finally, the com- puting and analyzing results of the operating characteristics are confirmed through the experiment.
基金supported by the DEEPCOBOT project under Grant 306640/O70 funded by the Research Council of Norway.
文摘This paper studies motor joint control of a 4-degree-of-freedom(DoF)robotic manipulator using learning-based Adaptive Dynamic Programming(ADP)approach.The manipulator’s dynamics are modelled as an open-loop 4-link serial kinematic chain with 4 Degrees of Freedom(DoF).Decentralised optimal controllers are designed for each link using ADP approach based on a set of cost matrices and data collected from exploration trajectories.The proposed control strategy employs an off-line,off-policy iterative approach to derive four optimal control policies,one for each joint,under exploration strategies.The objective of the controller is to control the position of each joint.Simulation and experimental results show that four independent optimal controllers are found,each under similar exploration strategies,and the proposed ADP approach successfully yields optimal linear control policies despite the presence of these complexities.The experimental results conducted on the Quanser Qarm robotic platform demonstrate the effectiveness of the proposed ADP controllers in handling significant dynamic nonlinearities,such as actuation limitations,output saturation,and filter delays.
基金the National Natural Science Foundation of China(No.51279106)the Special Research Fund for the Doctoral Program of Higher Education of China(No.20110073110009)
文摘The S-type test is simulated based on a ship manoeuvring mathematical model of 4 degrees of freedom(4-DOF);simultaneously,sensitivity analysis of the hydrodynamic coefficients in the mathematical model is implemented by using an indirect method.The mathematical model is simplified by omitting the coefficients of smaller sensitivity according to the results of sensitivity analysis.The 10°/10° zigzag test and 35° turning circle manoeuvre are simulated with the original and the simplified mathematical models.The comparison of the simulation results shows the effectiveness of the sensitivity analysis and the validity of the simplified model.