期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
利用3VmrMLM方法检测陆地棉株高QTN及QTN-环境互作(QEI)
1
作者 赵海红 李梦媛 +5 位作者 刘锦婧 王园园 杜磊 王娟 董承光 李成奇 《作物学报》 北大核心 2025年第10期2619-2631,共13页
株高是棉花重要的株型性状,与棉花产量和机械化采收密切相关。本研究以340份陆地棉品种(系)为材料,利用CottonSNP80K芯片和3VmrMLM方法对6个环境(5个单环境和1个多环境)的株高进行了全基因组关联分析,鉴定QTN及QTN-环境互作(QEI)。基因... 株高是棉花重要的株型性状,与棉花产量和机械化采收密切相关。本研究以340份陆地棉品种(系)为材料,利用CottonSNP80K芯片和3VmrMLM方法对6个环境(5个单环境和1个多环境)的株高进行了全基因组关联分析,鉴定QTN及QTN-环境互作(QEI)。基因分型获得47,959个多态性SNP标记,这些标记将所有材料分为2个亚群。表型分析结果显示,株高在各环境呈广泛连续变异,基因型方差、环境方差及基因型-环境互作方差均达极显著水平。6个环境共检测到111个与株高相关的QTN,其中TM66913(D08)和TM79201(D12)2个稳定的QTN至少在3个环境中同时被检测到;5个QTN与前人报道的QTL/标记位点重叠。对2个稳定的QTN附近基因的功能富集分析发现,3个基因GH_D08G0118、GH_D08G0131和GH_D12G1786同时显著富集在GO和KEGG中,其中GH_D08G0118在陆地棉TM-1的茎中有较高表达。本研究检测到8个QEI,其中3个QEI为显著互作。对显著位点附近基因的功能富集分析发现,涉及15个基因的GO条目和涉及2个基因的KEGG通路被显著富集,GH_D08G1507在TM-1的茎中有较高表达。利用3VmrMLM方法检测到许多小效应位点,部分解决了复杂性状“遗传率丢失”问题。本研究检测到的QTN和QEI及其效应,为深入解析陆地棉株高的遗传基础提供了新视角,也为通过分子设计培育适宜株高的棉花品种提供了重要信息。 展开更多
关键词 3vmrmlm 陆地棉 株高 QTN QTN-环境互作(QEI) 效应
在线阅读 下载PDF
The integration of quantile regression with 3VmrMLM identifies more QTNs and QTN-by-environment interactions using SNP-and haplotype-based markers
2
作者 Wen-Xian Sun Xiao-Yu Chang +2 位作者 Ying Chen Qiong Zhao Yuan-Ming Zhang 《Plant Communications》 2025年第3期20-33,共14页
Current methods used in genome-wide association studies frequently lack power owing to their inability to detect heterogeneous associations and rare and multiallelic variants.To address these issues,quantile regressio... Current methods used in genome-wide association studies frequently lack power owing to their inability to detect heterogeneous associations and rare and multiallelic variants.To address these issues,quantile regression is integrated with a three(compressed)variance component multi-locus random-SNP-effect mixed linear model(3VmrMLM)to propose q3VmrMLM for detecting heterogeneous quantitative trait nucleotides(QTNs)and QTN-by-environment interactions(QEIs),and then design haplotype-based q3VmrMLM(q3VmrMLM-Hap)for identifying multiallelic haplotypes and rare variants.In Monte Carlo simulation studies,q3VmrMLM had higher power than 3VmrMLM,sequence kernel association test(SKAT),and integrated quantile rank test(iQRAT).In a re-analysis of 10 traits in 1439 rice hybrids,261 known genes were identified only by q3VmrMLM and q3VmrMLM-Hap,whereas 175 known genes were detected by both the new and existing methods.Of all the significant QTNs with known genes,q3VmrMLM(179:140 variance heterogeneity and 157 quantile effect heterogeneity)found more heterogeneous QTNs than 3VmrMLM(123),SKAT(27),and iQRAT(29);q3VmrMLM-Hap(121)mapped more lowfrequency(<0.05)QTNs than q3VmrMLM(51),3VmrMLM(43),SKAT(11),and iQRAT(12);and q3VmrMLM-Hap(12),q3VmrMLM(16),and 3VmrMLM(12)had similar power in identifying gene-by-environment interactions.All significant and suggested QTNs achieved the highest predictive accuracy(r=0.9045).In conclusion,this study describes a new and complementary approach to mining genes and unraveling the genetic architecture of complex traits in crops. 展开更多
关键词 quantile regression 3vmrmlm QTN QTN-by-environment interaction heterogeneous associations multiallelic variants
原文传递
Fast3VmrMLM:A fast algorithm that integrates genome-wide scanning with machine learning to accelerate gene mining and breeding by design for polygenic traits in large-scale GWAS datasets
3
作者 Jingtian Wang Ying Chen +6 位作者 Guoping Shu Miaomiao Zhao Ao Zheng Xiaoyu Chang Guiqi Li Yibo Wang Yuan-Ming Zhang 《Plant Communications》 2025年第7期42-56,共15页
Genetic dissection and breeding by design for polygenic traits remain substantial challenges.To ad-dress these challenges,it is important to identify as many genes as possible,including key regulatory genes.Here,we de... Genetic dissection and breeding by design for polygenic traits remain substantial challenges.To ad-dress these challenges,it is important to identify as many genes as possible,including key regulatory genes.Here,we developed a genome-wide scanning plus machine learning framework,integrated with advanced computational techniques,to propose a novel algorithm named Fast3VmrMLM.This algo-rithm aims to enhance the identification of abundant and key genes for polygenic traits in the era of big data and artificial intelligence.The algorithm was extended to identify haplotype(Fast3VmrMLM-Hap)and molecular(Fast3VmrMLM-mQTL)variants.In simulation studies,Fast3VmrMLM outperformed existing methods in detecting dominant,small,and rare variants,requiring only 3.30 and 5.43 h(20 threads)to analyze the 18K rice and UK Biobank-scale datasets,respectively.Fast3VmrMLM identified more known(211)and candidate(384)genes for 14 traits in the 18K rice dataset than FarmCPU(100 known genes).Additionally,it identified 26 known and 24 candidate genes for seven yield-related traits in a maize NC II design;Fast3VmrMLM-mQTL identified two known soybean genes near structural variants.We demonstrated that this novel two-step framework outperformed genome-wide scanning alone.In breeding by design,a genetic network constructed via machine learning using all known and candidate genes identified in this study revealed 21 key genes associated with rice yield-related traits.All associated markers yielded high prediction accuracies in rice(0.7443)and maize(0.8492),en-abling the development of superior hybrid combinations.A new breeding-by-design strategy based on the identified key genes was also proposed.This study provides an effective method for gene mining and breeding by design. 展开更多
关键词 Fast3vmrmlm machine learning large-scale data polygenic trait efficient gene mining breeding by design
原文传递
大豆株高与主茎节数的全基因组关联分析
4
作者 曾顺安 贾世豪 曹永策 《智慧农业导刊》 2023年第19期34-38,共5页
株高和主茎节数是大豆重要的株型性状,对产量有显著影响。该研究以281份大豆种质为试验材料,利用多个田间环境的表型数据,使用3VmrMLM模型对大豆株高和主茎节数进行全基因组关联分析。共检测到36个显著QTNs(Quantitative Trait Nucleoti... 株高和主茎节数是大豆重要的株型性状,对产量有显著影响。该研究以281份大豆种质为试验材料,利用多个田间环境的表型数据,使用3VmrMLM模型对大豆株高和主茎节数进行全基因组关联分析。共检测到36个显著QTNs(Quantitative Trait Nucleotides,数量性状核苷酸)和1个环境互作QTN(QEI)及25个显著QTN和2个QEI分别控制大豆株高和主茎节数。进一步分析发现,位于6号染色体40.69~41.18 Mb、18号染色体3.40~3.74 Mb和20号染色体34.66~34.87 Mb 3个基因组区间同时控制2个性状,可以认为是控制大豆株型的重要位点,且18号染色体上基因组区间为该研究新检测到的。研究结果可以为深入了解大豆株型性状的遗传基础及标记辅助育种提供有用的信息。 展开更多
关键词 大豆:株高 主茎节数 全基因组关联分析 3vmrmlm模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部