The refining effect of Al3Ti1B1RE master alloy on Al sheets used for pressure can manufacture and the behavior of mixed rare earths in master alloy were investigated with XRD, OM, SEM and EDAX. It is found that the r...The refining effect of Al3Ti1B1RE master alloy on Al sheets used for pressure can manufacture and the behavior of mixed rare earths in master alloy were investigated with XRD, OM, SEM and EDAX. It is found that the refining effect of the refiner on the material has superiority over foreign or domestic Al5Ti1B refiner, and the refiner still retains its refining ability for 6 h after adding it to molten Al, thus improving the strength and plasticity of the material remarkably. The excellent refining effect and stability of AlTiBRE refiner result from that RE can lower the surface energy of molten Al and improve the wetting characteristics of molten Al on refinement nuclei such as TiAl 3, TiB 2, etc., thus giving full play to the effect of heterogeneous nucleation and impeding the congregating tendency of TiB 2 phase in molten Al. At the same time, RE gathering in front of solid/liquid interface are also easy to cause composition supercooling in molten Al, thus impeding the growth of α Al grains and promoting α Al nucleation on refinement nuclei. In addition, RE also play certain role in purification and grain refinement, or modification, especially their effect of purification can improve the metallurgical quality of AlTiBRE master alloy.展开更多
采用溶胶-凝胶法制备Y0.06Sr0.94Ti1-xFexO3-δ(x为原子分数。x=0.2,0.3,0.4,0.5)混合导体材料,用X射线衍射(XRD)分析该材料的物相,采用交流阻抗法和电子阻塞电极法分别测定其总电导率与离子电导率,研究铁含量对Y0.06Sr0.94T...采用溶胶-凝胶法制备Y0.06Sr0.94Ti1-xFexO3-δ(x为原子分数。x=0.2,0.3,0.4,0.5)混合导体材料,用X射线衍射(XRD)分析该材料的物相,采用交流阻抗法和电子阻塞电极法分别测定其总电导率与离子电导率,研究铁含量对Y0.06Sr0.94TiO3混合导体材料的结构及电性能的影响。结果表明该材料属于单一立方相钙钛矿结构;在测试温度范围内,Y0.06Sr0.94Ti1-xFexO3-δ的总电导率和离子电导率都随温度升高而增大;随 Fe 掺杂量增加,总电导率和离子电导率都增大。在800℃下Y0.06Sr0.94Ti1-xFexO3-δ(x=0.2,0.3,0.4,0.5)的总电导率为0.019~0.12 S/cm,离子电导率为0.0106~0.0153 S/cm。根据传导活化能可以看出,x从0.3增加到0.4时材料的传导机制发生改变。展开更多
文摘The refining effect of Al3Ti1B1RE master alloy on Al sheets used for pressure can manufacture and the behavior of mixed rare earths in master alloy were investigated with XRD, OM, SEM and EDAX. It is found that the refining effect of the refiner on the material has superiority over foreign or domestic Al5Ti1B refiner, and the refiner still retains its refining ability for 6 h after adding it to molten Al, thus improving the strength and plasticity of the material remarkably. The excellent refining effect and stability of AlTiBRE refiner result from that RE can lower the surface energy of molten Al and improve the wetting characteristics of molten Al on refinement nuclei such as TiAl 3, TiB 2, etc., thus giving full play to the effect of heterogeneous nucleation and impeding the congregating tendency of TiB 2 phase in molten Al. At the same time, RE gathering in front of solid/liquid interface are also easy to cause composition supercooling in molten Al, thus impeding the growth of α Al grains and promoting α Al nucleation on refinement nuclei. In addition, RE also play certain role in purification and grain refinement, or modification, especially their effect of purification can improve the metallurgical quality of AlTiBRE master alloy.
文摘采用溶胶-凝胶法制备Y0.06Sr0.94Ti1-xFexO3-δ(x为原子分数。x=0.2,0.3,0.4,0.5)混合导体材料,用X射线衍射(XRD)分析该材料的物相,采用交流阻抗法和电子阻塞电极法分别测定其总电导率与离子电导率,研究铁含量对Y0.06Sr0.94TiO3混合导体材料的结构及电性能的影响。结果表明该材料属于单一立方相钙钛矿结构;在测试温度范围内,Y0.06Sr0.94Ti1-xFexO3-δ的总电导率和离子电导率都随温度升高而增大;随 Fe 掺杂量增加,总电导率和离子电导率都增大。在800℃下Y0.06Sr0.94Ti1-xFexO3-δ(x=0.2,0.3,0.4,0.5)的总电导率为0.019~0.12 S/cm,离子电导率为0.0106~0.0153 S/cm。根据传导活化能可以看出,x从0.3增加到0.4时材料的传导机制发生改变。