即时定位与地图构建(simultaneous localization and mapping,SLAM)算法是移动机器人实现自主移动的关键环节。激光雷达(LiDAR)具有测距精度高、不易受外部干扰和地图构建直观方便等优点,广泛应用于大型复杂室内外场景地图的构建。随着3...即时定位与地图构建(simultaneous localization and mapping,SLAM)算法是移动机器人实现自主移动的关键环节。激光雷达(LiDAR)具有测距精度高、不易受外部干扰和地图构建直观方便等优点,广泛应用于大型复杂室内外场景地图的构建。随着3D激光器的应用与普及,国内外学者围绕基于3D激光雷达的SLAM算法的研究已取得丰硕的成果。梳理了3D激光SLAM算法在前端数据关联、后端优化等环节的国内外研究现状,分析总结了目前各种3D激光SLAM算法以及改进方案的原理和优缺点,阐述了深度学习和多传感器融合理论与技术在3D激光SLAM算法中的应用情况,指出多源信息融合、与深度学习结合、应用场景的鲁棒性、SLAM算法通用框架及移动传感器和无线信号体制的技术渗透是3D激光SLAM算法的研究热点和发展趋势。研究成果对3D激光SLAM算法和未知环境中移动机器人即时定位和地图构建的研究具有重要的参考价值和指导意义。展开更多
针对现有基于伪点云的3D目标检测算法精度远低于基于真实激光雷达(Light Detection and ranging,LiDar)点云的3D目标检测,本文研究伪点云重构,并提出适合伪点云的3D目标检测网络.考虑到由图像深度转换得到的伪点云稠密且随深度增大逐渐...针对现有基于伪点云的3D目标检测算法精度远低于基于真实激光雷达(Light Detection and ranging,LiDar)点云的3D目标检测,本文研究伪点云重构,并提出适合伪点云的3D目标检测网络.考虑到由图像深度转换得到的伪点云稠密且随深度增大逐渐稀疏,本文提出深度相关伪点云稀疏化方法,在减少后续计算量的同时保留中远距离更多的有效伪点云,实现伪点云重构.本文提出LiDar点云指导下特征分布趋同与语义关联的3D目标检测网络,在网络训练时引入LiDar点云分支来指导伪点云目标特征的生成,使生成的伪点云特征分布趋同于LiDar点云特征分布,从而降低数据源不一致造成的检测性能损失;针对RPN(Region Proposal Network)网络获取的3D候选框内的伪点云间语义关联不足的问题,设计注意力感知模块,在伪点云特征表示中通过注意力机制嵌入点间的语义关联关系,提升3D目标检测精度.在KITTI 3D目标检测数据集上的实验结果表明:现有的3D目标检测网络采用重构后的伪点云,检测精度提升了2.61%;提出的特征分布趋同与语义关联的3D目标检测网络,将基于伪点云的3D目标检测精度再提升0.57%,相比其他优秀的3D目标检测方法在检测精度上也有提升.展开更多
针对现有的基于机载LiDAR数据的滤波算法未能充分利用数据提供的所有信息及其所采用的数据结构表达复杂、存在信息损失等缺陷,提出了一种灰度体素结构分割模型下的机载LiDAR 3D滤波算法。算法首先以综合利用机载LiDAR数据的高程及强度...针对现有的基于机载LiDAR数据的滤波算法未能充分利用数据提供的所有信息及其所采用的数据结构表达复杂、存在信息损失等缺陷,提出了一种灰度体素结构分割模型下的机载LiDAR 3D滤波算法。算法首先以综合利用机载LiDAR数据的高程及强度信息为目的将点云数据规则化为灰度(体素内激光点的平均强度的离散化表示)体素结构,然后基于各体素间的空间连通性和灰度相似性准则,将灰度体素结构分割并标记为若干个3D连通区域,最后依据地面与其它目标的高差特性提取与其对应的3D连通区域。算法优势在于:基于体素结构设计,为3D滤波算法;综合利用了地面目标的几何及辐射特征,对比传统滤波算法可应用于更复杂的场景;滤波结果为3D地面体素形式,可直接用于创建地面3D模型。实验采用国际摄影测量与遥感协会(International Society for Photogrammetry and Remote Sensing,ISPRS)提供的不同密度的机载LiDAR基准测试数据测试了邻域尺度参数的敏感性及提出的算法的有效性,并和其他经典滤波算法做对比。定量评价的结果表明,51邻域为最佳空间邻域尺度;点云密度为0.67点/m2的数据集1的滤波平均完整率、正确率及质量分别为0.9611、0.9248及0.8934;点云密度为4点/m2的数据集2的滤波平均完整率、正确率及质量分别为0.8490、0.8531及0.7404;对比其全经典滤波算法本文算法在高密度点云数据滤波时表现更佳。展开更多
文摘即时定位与地图构建(simultaneous localization and mapping,SLAM)算法是移动机器人实现自主移动的关键环节。激光雷达(LiDAR)具有测距精度高、不易受外部干扰和地图构建直观方便等优点,广泛应用于大型复杂室内外场景地图的构建。随着3D激光器的应用与普及,国内外学者围绕基于3D激光雷达的SLAM算法的研究已取得丰硕的成果。梳理了3D激光SLAM算法在前端数据关联、后端优化等环节的国内外研究现状,分析总结了目前各种3D激光SLAM算法以及改进方案的原理和优缺点,阐述了深度学习和多传感器融合理论与技术在3D激光SLAM算法中的应用情况,指出多源信息融合、与深度学习结合、应用场景的鲁棒性、SLAM算法通用框架及移动传感器和无线信号体制的技术渗透是3D激光SLAM算法的研究热点和发展趋势。研究成果对3D激光SLAM算法和未知环境中移动机器人即时定位和地图构建的研究具有重要的参考价值和指导意义。
文摘针对现有的基于机载LiDAR数据的滤波算法未能充分利用数据提供的所有信息及其所采用的数据结构表达复杂、存在信息损失等缺陷,提出了一种灰度体素结构分割模型下的机载LiDAR 3D滤波算法。算法首先以综合利用机载LiDAR数据的高程及强度信息为目的将点云数据规则化为灰度(体素内激光点的平均强度的离散化表示)体素结构,然后基于各体素间的空间连通性和灰度相似性准则,将灰度体素结构分割并标记为若干个3D连通区域,最后依据地面与其它目标的高差特性提取与其对应的3D连通区域。算法优势在于:基于体素结构设计,为3D滤波算法;综合利用了地面目标的几何及辐射特征,对比传统滤波算法可应用于更复杂的场景;滤波结果为3D地面体素形式,可直接用于创建地面3D模型。实验采用国际摄影测量与遥感协会(International Society for Photogrammetry and Remote Sensing,ISPRS)提供的不同密度的机载LiDAR基准测试数据测试了邻域尺度参数的敏感性及提出的算法的有效性,并和其他经典滤波算法做对比。定量评价的结果表明,51邻域为最佳空间邻域尺度;点云密度为0.67点/m2的数据集1的滤波平均完整率、正确率及质量分别为0.9611、0.9248及0.8934;点云密度为4点/m2的数据集2的滤波平均完整率、正确率及质量分别为0.8490、0.8531及0.7404;对比其全经典滤波算法本文算法在高密度点云数据滤波时表现更佳。