The centroid coordinate serves as a critical control parameter in motion systems,including aircraft,missiles,rockets,and drones,directly influencing their motion dynamics and control performance.Traditional methods fo...The centroid coordinate serves as a critical control parameter in motion systems,including aircraft,missiles,rockets,and drones,directly influencing their motion dynamics and control performance.Traditional methods for centroid measurement often necessitate custom equipment and specialized positioning devices,leading to high costs and limited accuracy.Here,we present a centroid measurement method that integrates 3D scanning technology,enabling accurate measurement of centroid across various types of objects without the need for specialized positioning fixtures.A theoretical framework for centroid measurement was established,which combined the principle of the multi-point weighing method with 3D scanning technology.The measurement accuracy was evaluated using a designed standard component.Experimental results demonstrate that the discrepancies between the theoretical and the measured centroid of a standard component with various materials and complex shapes in the X,Y,and Z directions are 0.003 mm,0.009 mm,and 0.105 mm,respectively,yielding a spatial deviation of 0.106 mm.Qualitative verification was conducted through experimental validation of three distinct types.They confirmed the reliability of the proposed method,which allowed for accurate centroid measurements of various products without requiring positioning fixtures.This advancement significantly broadened the applicability and scope of centroid measurement devices,offering new theoretical insights and methodologies for the measurement of complex parts and systems.展开更多
In three-dimensional computed tomography angiography (3D-CTA) in our facility, we usually scan the volume of the brain according to the bolus tracking method. Fluoroscopic slice is placed at the Willis’s ring and the...In three-dimensional computed tomography angiography (3D-CTA) in our facility, we usually scan the volume of the brain according to the bolus tracking method. Fluoroscopic slice is placed at the Willis’s ring and the timing of scan is determined subjectively by a radiological technologist after strong enhancement of the basal cerebral artery is confirmed. In these procedures, however, variation of scan timing is often problematic. Therefore, we design the surpassing method to place the small region-of-interest (ROI) at the basal cerebral arteries and to start CT scan automatically. In this protocol, the fluoroscopic slices of the distal internal carotid arteries are selected referring to the precontrast volume data, small ROIs are set in bilateral internal carotid arteries, and scan trigger of CT is started automatically at the threshold of 170 HU. The maximum 80 mL of iodine contrast agent 300 mgI/mL is injected intravenously at the rate of 4.0 mL/sec, and the volume of the arterial phase is scanned automatically. We measure ROIs at the internal carotid arteries based on the obtained volume data of arterial phase and estimate the optimal scan timings from the fluoroscopic CT images reformatted at the intervals of 0.1 sec. In 38 of 53 patients, placement of the small ROIs is succeeded and automatic or manual CT scan is performed. In the patients who succeed in placement of the small ROIs, optimal scan timing of the arterial phase is obtained, while in the patients who fail placement of the small ROIs, a large variation is observed in their scan timings. Their results suggest that more stable scanning of the arterial phase is available by means of small ROI placement and automatic scanning. The clinical significance is large because the stability and reproducibility of the examination provide a quantitative analysis and more accurate diagnosis.展开更多
The instantaneous desulfurization of CaO-Al_(2)O_(3)-SiO_(2)slag particles in the molten steel was in situ observed using a high-temperature confocal scanning laser microscope.The desulfurization effect of CaO-Al_(2)O...The instantaneous desulfurization of CaO-Al_(2)O_(3)-SiO_(2)slag particles in the molten steel was in situ observed using a high-temperature confocal scanning laser microscope.The desulfurization effect of CaO-Al_(2)O_(3)-SiO_(2)slags with different compositions was discussed.The influence of CaO/Al_(2)O_(3)and CaO/SiO_(2)on the desulfurization effect was analyzed.It was shown that in the liquid phase range,the higher CaO/SiO_(2)and CaO/Al_(2)O_(3)can significantly improve the desulfurization effect of the slag.A dimensionless desulfurization index Sindex was introduced to evaluate the desulfurization ability of CaO-Al_(2)O_(3)-SiO_(2)slags quantitatively.The Sindex values of CaO-Al_(2)O_(3)-SiO_(2)with different compositions at 1550°C were calculated.It was suggested to use(65%-75%)CaO-(0-20%)SiO_(2)-(20%-40%)Al_(2)O_(3)slags to improve the molten steel desulfurization.展开更多
This paper presents a complete system for scanning the geometry and texture of a large 3D object, then the automatic registration is performed to obtain a whole realistic 3D model. This system is composed of one line ...This paper presents a complete system for scanning the geometry and texture of a large 3D object, then the automatic registration is performed to obtain a whole realistic 3D model. This system is composed of one line strip laser and one color CCD camera. The scanned object is pictured twice by a color CCD camera. First, the texture of the scanned object is taken by a color CCD camera. Then the 3D information of the scanned object is obtained from laser plane equations. This paper presents a practical way to implement the three dimensional measuring method and the automatic registration of a large 3D object and a pretty good result is obtained after experiment verification.展开更多
基金supported by National Natural Science Foundation of China(No.52176122).
文摘The centroid coordinate serves as a critical control parameter in motion systems,including aircraft,missiles,rockets,and drones,directly influencing their motion dynamics and control performance.Traditional methods for centroid measurement often necessitate custom equipment and specialized positioning devices,leading to high costs and limited accuracy.Here,we present a centroid measurement method that integrates 3D scanning technology,enabling accurate measurement of centroid across various types of objects without the need for specialized positioning fixtures.A theoretical framework for centroid measurement was established,which combined the principle of the multi-point weighing method with 3D scanning technology.The measurement accuracy was evaluated using a designed standard component.Experimental results demonstrate that the discrepancies between the theoretical and the measured centroid of a standard component with various materials and complex shapes in the X,Y,and Z directions are 0.003 mm,0.009 mm,and 0.105 mm,respectively,yielding a spatial deviation of 0.106 mm.Qualitative verification was conducted through experimental validation of three distinct types.They confirmed the reliability of the proposed method,which allowed for accurate centroid measurements of various products without requiring positioning fixtures.This advancement significantly broadened the applicability and scope of centroid measurement devices,offering new theoretical insights and methodologies for the measurement of complex parts and systems.
文摘In three-dimensional computed tomography angiography (3D-CTA) in our facility, we usually scan the volume of the brain according to the bolus tracking method. Fluoroscopic slice is placed at the Willis’s ring and the timing of scan is determined subjectively by a radiological technologist after strong enhancement of the basal cerebral artery is confirmed. In these procedures, however, variation of scan timing is often problematic. Therefore, we design the surpassing method to place the small region-of-interest (ROI) at the basal cerebral arteries and to start CT scan automatically. In this protocol, the fluoroscopic slices of the distal internal carotid arteries are selected referring to the precontrast volume data, small ROIs are set in bilateral internal carotid arteries, and scan trigger of CT is started automatically at the threshold of 170 HU. The maximum 80 mL of iodine contrast agent 300 mgI/mL is injected intravenously at the rate of 4.0 mL/sec, and the volume of the arterial phase is scanned automatically. We measure ROIs at the internal carotid arteries based on the obtained volume data of arterial phase and estimate the optimal scan timings from the fluoroscopic CT images reformatted at the intervals of 0.1 sec. In 38 of 53 patients, placement of the small ROIs is succeeded and automatic or manual CT scan is performed. In the patients who succeed in placement of the small ROIs, optimal scan timing of the arterial phase is obtained, while in the patients who fail placement of the small ROIs, a large variation is observed in their scan timings. Their results suggest that more stable scanning of the arterial phase is available by means of small ROI placement and automatic scanning. The clinical significance is large because the stability and reproducibility of the examination provide a quantitative analysis and more accurate diagnosis.
基金support from the National Key R&D Program(No.2023YFB3709901)the National Natural Science Foundation of China(Grant No.U22A20171)China Baowu Low Carbon Metallurgy Innovation Foundation(BWLCF202315).
文摘The instantaneous desulfurization of CaO-Al_(2)O_(3)-SiO_(2)slag particles in the molten steel was in situ observed using a high-temperature confocal scanning laser microscope.The desulfurization effect of CaO-Al_(2)O_(3)-SiO_(2)slags with different compositions was discussed.The influence of CaO/Al_(2)O_(3)and CaO/SiO_(2)on the desulfurization effect was analyzed.It was shown that in the liquid phase range,the higher CaO/SiO_(2)and CaO/Al_(2)O_(3)can significantly improve the desulfurization effect of the slag.A dimensionless desulfurization index Sindex was introduced to evaluate the desulfurization ability of CaO-Al_(2)O_(3)-SiO_(2)slags quantitatively.The Sindex values of CaO-Al_(2)O_(3)-SiO_(2)with different compositions at 1550°C were calculated.It was suggested to use(65%-75%)CaO-(0-20%)SiO_(2)-(20%-40%)Al_(2)O_(3)slags to improve the molten steel desulfurization.
文摘This paper presents a complete system for scanning the geometry and texture of a large 3D object, then the automatic registration is performed to obtain a whole realistic 3D model. This system is composed of one line strip laser and one color CCD camera. The scanned object is pictured twice by a color CCD camera. First, the texture of the scanned object is taken by a color CCD camera. Then the 3D information of the scanned object is obtained from laser plane equations. This paper presents a practical way to implement the three dimensional measuring method and the automatic registration of a large 3D object and a pretty good result is obtained after experiment verification.