期刊文献+
共找到60篇文章
< 1 2 3 >
每页显示 20 50 100
Monocular 3D object detection with Pseudo-LiDAR confidence sampling and hierarchical geometric feature extraction in 6G network
1
作者 Jianlong Zhang Guangzu Fang +3 位作者 Bin Wang Xiaobo Zhou Qingqi Pei Chen Chen 《Digital Communications and Networks》 SCIE CSCD 2023年第4期827-835,共9页
The high bandwidth and low latency of 6G network technology enable the successful application of monocular 3D object detection on vehicle platforms.Monocular 3D-object-detection-based Pseudo-LiDAR is a low-cost,lowpow... The high bandwidth and low latency of 6G network technology enable the successful application of monocular 3D object detection on vehicle platforms.Monocular 3D-object-detection-based Pseudo-LiDAR is a low-cost,lowpower solution compared to LiDAR solutions in the field of autonomous driving.However,this technique has some problems,i.e.,(1)the poor quality of generated Pseudo-LiDAR point clouds resulting from the nonlinear error distribution of monocular depth estimation and(2)the weak representation capability of point cloud features due to the neglected global geometric structure features of point clouds existing in LiDAR-based 3D detection networks.Therefore,we proposed a Pseudo-LiDAR confidence sampling strategy and a hierarchical geometric feature extraction module for monocular 3D object detection.We first designed a point cloud confidence sampling strategy based on a 3D Gaussian distribution to assign small confidence to the points with great error in depth estimation and filter them out according to the confidence.Then,we present a hierarchical geometric feature extraction module by aggregating the local neighborhood features and a dual transformer to capture the global geometric features in the point cloud.Finally,our detection framework is based on Point-Voxel-RCNN(PV-RCNN)with high-quality Pseudo-LiDAR and enriched geometric features as input.From the experimental results,our method achieves satisfactory results in monocular 3D object detection. 展开更多
关键词 Monocular 3D object detection Pseudo-LiDAR Confidence sampling Hierarchical geometric feature extraction
在线阅读 下载PDF
Extraction of Feature Points for Non-Uniform Rational B-Splines(NURBS)-Based Modeling of Human Legs
2
作者 WANG Xi WU Zongqian LI Qiao 《Journal of Donghua University(English Edition)》 CAS 2022年第4期299-303,共5页
Methods of digital human modeling have been developed and utilized to reflect human shape features.However,most of published works focused on dynamic visualization or fashion design,instead of high-accuracy modeling,w... Methods of digital human modeling have been developed and utilized to reflect human shape features.However,most of published works focused on dynamic visualization or fashion design,instead of high-accuracy modeling,which was strongly demanded by medical or rehabilitation scenarios.Prior to a high-accuracy modeling of human legs based on non-uniform rational B-splines(NURBS),the method of extracting the required quasi-grid network of feature points for human legs is presented in this work.Given the 3 D scanned human body,the leg is firstly segmented and put in standardized position.Then re-sampling of the leg is conducted via a set of equidistant cross sections.Through analysis of leg circumferences and circumferential curvature,the characteristic sections of the leg as well as the characteristic points on the sections are then identified according to the human anatomy and shape features.The obtained collection can be arranged to form a grid of data points for knots calculation and high-accuracy shape reconstruction in future work. 展开更多
关键词 3D scan digital human modeling non-uniform rational B-splines(NURBS) feature extraction
在线阅读 下载PDF
Adaptive Window Based 3-D Feature Selection for Multispectral Image Classification Using Firefly Algorithm 被引量:1
3
作者 M.Rajakani R.J.Kavitha A.Ramachandran 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期265-280,共16页
Feature extraction is the most critical step in classification of multispectral image.The classification accuracy is mainly influenced by the feature sets that are selected to classify the image.In the past,handcrafte... Feature extraction is the most critical step in classification of multispectral image.The classification accuracy is mainly influenced by the feature sets that are selected to classify the image.In the past,handcrafted feature sets are used which are not adaptive for different image domains.To overcome this,an evolu-tionary learning method is developed to automatically learn the spatial-spectral features for classification.A modified Firefly Algorithm(FA)which achieves maximum classification accuracy with reduced size of feature set is proposed to gain the interest of feature selection for this purpose.For extracting the most effi-cient features from the data set,we have used 3-D discrete wavelet transform which decompose the multispectral image in all three dimensions.For selecting spatial and spectral features we have studied three different approaches namely overlapping window(OW-3DFS),non-overlapping window(NW-3DFS)adaptive window cube(AW-3DFS)and Pixel based technique.Fivefold Multiclass Support Vector Machine(MSVM)is used for classification purpose.Experiments con-ducted on Madurai LISS IV multispectral image exploited that the adaptive win-dow approach is used to increase the classification accuracy. 展开更多
关键词 Multispectral image modifiedfirefly algorithm 3-D feature extraction feature selection multiclass support vector machine CLASSIFICATION
在线阅读 下载PDF
A Novel Airborne 3D Laser Point Cloud Hole Repair Algorithm Considering Topographic Features 被引量:6
4
作者 Zan ZHU Shu GAN +1 位作者 Jianqi WANG Nijia QIAN 《Journal of Geodesy and Geoinformation Science》 2020年第3期29-38,共10页
Hole repair processing is an important part of point cloud data processing in airborne 3-dimensional(3D)laser scanning technology.Due to the fragmentation and irregularity of the surface morphology,when applying the 3... Hole repair processing is an important part of point cloud data processing in airborne 3-dimensional(3D)laser scanning technology.Due to the fragmentation and irregularity of the surface morphology,when applying the 3D laser scanning technology to mountain mapping,the conventional mathematical cloud-based point cloud hole repair method is not ideal in practical applications.In order to solve this problem,we propose to repair the valley and ridge line first,and then repair the point cloud hole.The main technical steps of the method include the following points:First,the valley and ridge feature lines are extracted by the GIS slope analysis method;Then,the valley and ridge line missing from the hole are repaired by the mathematical interpolation method,and the repaired results are edited and inserted to the original point cloud;Finally,the traditional repair method is used to repair the point cloud hole whose valley line and ridge line have been repaired.Three experiments were designed and implemented in the east bank of the Xiaobaini River to test the performance of the proposed method.The results showed that compared with the direct point cloud hole repair method in Geomagic Studio software,the average repair accuracy of the proposed method,in the 16 m buffer zone of valley line and ridge line,is increased from 56.31 cm to 31.49 cm.The repair performance is significantly improved. 展开更多
关键词 airborne 3D laser scanning point cloud hole repair topographic feature line extraction mountain mapping
在线阅读 下载PDF
Cancellable Multi-Biometric Feature Veins Template Generation Based on SHA-3 Hashing
5
作者 Salwa M.Serag Eldin Ahmed Sedik +1 位作者 Sultan S.Alshamrani Ahmed M.Ayoup 《Computers, Materials & Continua》 SCIE EI 2023年第1期733-749,共17页
In this paper,a novel cancellable biometrics technique calledMulti-Biometric-Feature-Hashing(MBFH)is proposed.The MBFH strategy is utilized to actualize a single direction(non-invertibility)biometric shape.MBFH is a t... In this paper,a novel cancellable biometrics technique calledMulti-Biometric-Feature-Hashing(MBFH)is proposed.The MBFH strategy is utilized to actualize a single direction(non-invertibility)biometric shape.MBFH is a typical model security conspire that is distinguished in the utilization of this protection insurance framework in numerous sorts of biometric feature strategies(retina,palm print,Hand Dorsum,fingerprint).A more robust and accurate multilingual biological structure in expressing human loneliness requires a different format to record clients with inseparable comparisons from individual biographical sources.This may raise worries about their utilization and security when these spread out designs are subverted as everybody is acknowledged for another biometric attribute.The proposed structure comprises of four sections:input multi-biometric acquisition,feature extraction,Multi-Exposure Fusion(MEF)and secure hashing calculation(SHA-3).Multimodal biometrics systems that are more powerful and precise in human-unmistakable evidence require various configurations to store a comparative customer that can be contrasted with biometric wellsprings of people.Disparate top words,biometrics graphs can’t be denied and change to another request for positive Identifications(IDs)while settling.Cancellable biometrics is may be the special procedure used to recognize this issue. 展开更多
关键词 feature extraction multi-biometrics SHA-3 MEF
在线阅读 下载PDF
3D Enhanced Residual CNN for Video Super-Resolution Network
6
作者 Weiqiang Xin Zheng Wang +3 位作者 Xi Chen Yufeng Tang Bing Li Chunwei Tian 《Computers, Materials & Continua》 2025年第11期2837-2849,共13页
Deep convolutional neural networks(CNNs)have demonstrated remarkable performance in video super-resolution(VSR).However,the ability of most existing methods to recover fine details in complex scenes is often hindered ... Deep convolutional neural networks(CNNs)have demonstrated remarkable performance in video super-resolution(VSR).However,the ability of most existing methods to recover fine details in complex scenes is often hindered by the loss of shallow texture information during feature extraction.To address this limitation,we propose a 3D Convolutional Enhanced Residual Video Super-Resolution Network(3D-ERVSNet).This network employs a forward and backward bidirectional propagation module(FBBPM)that aligns features across frames using explicit optical flow through lightweight SPyNet.By incorporating an enhanced residual structure(ERS)with skip connections,shallow and deep features are effectively integrated,enhancing texture restoration capabilities.Furthermore,3D convolution module(3DCM)is applied after the backward propagation module to implicitly capture spatio-temporal dependencies.The architecture synergizes these components where FBBPM extracts aligned features,ERS fuses hierarchical representations,and 3DCM refines temporal coherence.Finally,a deep feature aggregation module(DFAM)fuses the processed features,and a pixel-upsampling module(PUM)reconstructs the high-resolution(HR)video frames.Comprehensive evaluations on REDS,Vid4,UDM10,and Vim4 benchmarks demonstrate well performance including 30.95 dB PSNR/0.8822 SSIM on REDS and 32.78 dB/0.8987 on Vim4.3D-ERVSNet achieves significant gains over baselines while maintaining high efficiency with only 6.3M parameters and 77ms/frame runtime(i.e.,20×faster than RBPN).The network’s effectiveness stems from its task-specific asymmetric design that balances explicit alignment and implicit fusion. 展开更多
关键词 Video super-resolution 3D convolution enhanced residual CNN spatio-temporal feature extraction
在线阅读 下载PDF
快速3D-CNN结合深度可分离卷积对高光谱图像分类 被引量:2
7
作者 王燕 梁琦 《计算机科学与探索》 CSCD 北大核心 2022年第12期2860-2869,共10页
针对卷积神经网络在高光谱图像特征提取和分类的过程中,存在空谱特征提取不充分以及网络层数太多引起的参数量大、计算复杂的问题,提出快速三维卷积神经网络(3D-CNN)结合深度可分离卷积(DSC)的轻量型卷积模型。该方法首先利用增量主成... 针对卷积神经网络在高光谱图像特征提取和分类的过程中,存在空谱特征提取不充分以及网络层数太多引起的参数量大、计算复杂的问题,提出快速三维卷积神经网络(3D-CNN)结合深度可分离卷积(DSC)的轻量型卷积模型。该方法首先利用增量主成分分析(IPCA)对输入的数据进行降维预处理;其次将输入模型的像素分割成小的重叠的三维小卷积块,在分割的小块上基于中心像素形成地面标签,利用三维核函数进行卷积处理,形成连续的三维特征图,保留空谱特征。用3D-CNN同时提取空谱特征,然后在三维卷积中加入深度可分离卷积对空间特征再次提取,丰富空谱特征的同时减少参数量,从而减少计算时间,分类精度也有所提高。所提模型在Indian Pines、Salinas Scene和University of Pavia公开数据集上验证,并且同其他经典的分类方法进行比较。实验结果表明,该方法不仅能大幅度节省可学习的参数,降低模型复杂度,而且表现出较好的分类性能,其中总体精度(OA)、平均分类精度(AA)和Kappa系数均可达99%以上。 展开更多
关键词 高光谱图像分类 空谱特征提取 三维卷积神经网络(3d-cnn) 深度可分离卷积(DSC) 深度学习
在线阅读 下载PDF
A review of road 3D modeling based on light detection and ranging point clouds 被引量:1
8
作者 Bin Yu Yuchen Wang +4 位作者 Qihang Chen Xiaoyang Chen Yuqin Zhang Kaiyue Luan Xiaole Ren 《Journal of Road Engineering》 2024年第4期386-398,共13页
Increasing development of accurate and efficient road three-dimensional(3D)modeling presents great opportunities to improve the data exchange and integration of building information modeling(BIM)models.3D modeling of ... Increasing development of accurate and efficient road three-dimensional(3D)modeling presents great opportunities to improve the data exchange and integration of building information modeling(BIM)models.3D modeling of road scenes is crucial for reference in asset management,construction,and maintenance.Light detection and ranging(Li DAR)technology is increasingly employed to generate high-quality point clouds for road inventory.In this paper,we specifically investigate the use of Li DAR data for road 3D modeling.The purpose of this review is to provide references about the existing work on the road 3D modeling based on Li DAR point clouds,critically discuss them,and provide challenges for further study.Besides,we introduce modeling standards for roads and discuss the components,types,and distinctions of various Li DAR measurement systems.Then,we review state-of-the-art methods and provide a detailed examination of road segmentation and feature extraction.Furthermore,we systematically introduce point cloud-based 3D modeling methods,namely,parametric modeling and surface reconstruction.Parameters and rules are used to define model components based on geometric and non-geometric information,whereas surface modeling is conducted through individual faces within its geometry.Finally,we discuss and summarize future research directions in this field.This review can assist researchers in enhancing existing approaches and developing new techniques for road modeling based on Li DAR point clouds. 展开更多
关键词 Road engineering LiDAR data 3D modeling Point cloud SEGMENTATION Key feature extraction
在线阅读 下载PDF
基于WorldView-3影像特征空间优化的随机森林算法在裸花紫珠信息提取中的研究 被引量:5
9
作者 史婷婷 张小波 +1 位作者 郭兰萍 黄璐琦 《中国中药杂志》 CAS CSCD 北大核心 2019年第19期4073-4077,共5页
以海南省白沙县细水乡为研究区,采用在特征选择和分类提取等方面都具有明显优势的随机森林算法,对研究区内的裸花紫珠种植信息进行提取。首先基于World View-3数据生成4类不同特征变量,包括光谱特征、主成分特征、植被指数和纹理特征;... 以海南省白沙县细水乡为研究区,采用在特征选择和分类提取等方面都具有明显优势的随机森林算法,对研究区内的裸花紫珠种植信息进行提取。首先基于World View-3数据生成4类不同特征变量,包括光谱特征、主成分特征、植被指数和纹理特征;其次通过随机森林分类算法对研究区裸花紫珠空间分布进行遥感提取研究;最后基于特征重要性对随机森林分类算法的特征空间进行优化,以得到最佳的随机森林分类结果,并与未优化特征空间的随机森林算法的分类结果进行比较。结果表明:①利用World View-3影像提取的裸花紫珠总体精度为89. 97%,Kappa系数为0. 84,表明随机森林算法在海南裸花紫珠识别中具有较高的分类精度和较好的适用性;②利用降维的分类特征提取裸花紫珠的总体精度为90. 4,Kappa系数为0. 85,表明随机森林算法可以有效地进行特征选择,在特征变量数据挖掘的同时,仍能保证裸花紫珠信息提取的精度,提高运行效率。该研究为栽培类药用植物资源的信息提取在特征选择和方法选择方面提供了一种新思路、方法和技术手段。 展开更多
关键词 裸花紫珠 WorldView-3 随机森林 特征选择 信息提取
原文传递
基于全局特征提取的无人机道路病害检测算法 被引量:1
10
作者 项彦茂 周明月 +2 位作者 李俊 谢喆 张小松 《计算机应用》 北大核心 2025年第S1期245-250,共6页
针对无人机(UAV)影像中道路小目标漏检和目标检测精度低、鲁棒性差等问题,设计一种基于全局特征提取的UAV道路病害检测算法GFE-RDD(Global Feature Extraction-Road Disease Detection)。将卷积神经网络(CNN)与Transformer融合的GFE-Tra... 针对无人机(UAV)影像中道路小目标漏检和目标检测精度低、鲁棒性差等问题,设计一种基于全局特征提取的UAV道路病害检测算法GFE-RDD(Global Feature Extraction-Road Disease Detection)。将卷积神经网络(CNN)与Transformer融合的GFE-Transformer模块嵌入主干网络,提升捕获长距离依赖关系的能力以获得全局上下文信息。为了更好地检测出小目标的道路病害,提出一个融合高效双通道注意力机制(EDA)的小目标检测头。另外,采用WIoUv3(Wise-Intersection over Union vision 3)作为网络的损失函数,解决训练数据中锚框质量差异较大的问题,并提高检测的准确性。在自制的道路多病害数据集上的实验结果表明,所提算法在道路病害检测任务中的F1分数达到0.765,mAP50达到0.796,均高于DETR(DEtection TRansformer)等当前主流算法,取得了较高的检测准确率。 展开更多
关键词 道路病害检测 WIoUv3 TRANSFORMER 小目标检测 高效双通道注意力机制 全局特征提取
在线阅读 下载PDF
水下目标识别的1/3倍频程掩蔽谱方法 被引量:2
11
作者 吴姚振 杨益新 王晓宇 《声学技术》 CSCD 2011年第6期538-541,共4页
在对现有水下目标噪声信号分布研究的基础上,基于声学分析中的1/3倍频程分析和人耳的听觉掩蔽效应,提出了1/3倍频程掩蔽谱特征提取方法,并对水下目标辐射噪声进行了特征提取和特征分析。结果表明,不同类的目标,其主频范围有其固定的区域... 在对现有水下目标噪声信号分布研究的基础上,基于声学分析中的1/3倍频程分析和人耳的听觉掩蔽效应,提出了1/3倍频程掩蔽谱特征提取方法,并对水下目标辐射噪声进行了特征提取和特征分析。结果表明,不同类的目标,其主频范围有其固定的区域。I类目标的主频一般在100Hz附近,II类目标的主频一般在100Hz和200Hz附近,III类目标的主频一般在450Hz附近。针对从属于三大类目标的29种目标中提取出的1107个样本进行了分类识别实验,识别正确率大于86%,验证了所提出的方法的有效性。 展开更多
关键词 目标识别 1/3倍频程掩蔽谱 特征提取
在线阅读 下载PDF
采用草绘轮廓的3维人脸建模方法 被引量:1
12
作者 刘凯 孙正兴 +3 位作者 张尧烨 宋沫飞 章菲倩 张岩 《中国图象图形学报》 CSCD 北大核心 2011年第6期1102-1111,共10页
为方便用户进行3维人脸形状设计,提出一种基于手绘轮廓的3维人脸建模方法。该方法的主要特点在于,一方面,引用姿态估计技术对人脸草图进行解析,将用户绘制的侧视人脸草图转换成对应的正视人脸草图,可支持用户选择多个视角绘制人脸;另一... 为方便用户进行3维人脸形状设计,提出一种基于手绘轮廓的3维人脸建模方法。该方法的主要特点在于,一方面,引用姿态估计技术对人脸草图进行解析,将用户绘制的侧视人脸草图转换成对应的正视人脸草图,可支持用户选择多个视角绘制人脸;另一方面,采用多层映射机制建立人脸草图特征点与3维人脸特征点之间的一一对应关系,由对应特征点之间的形变量来控制生成3维人脸,保证草图笔画的几何形状信息能有效映射到3维模型中。实验结果表明,文中方法能快速生成形状新颖的特定人脸,可有效支持用户进行3维人脸形状的手绘建模。 展开更多
关键词 手绘草图交互 3维人脸建模 姿态估计 特征点抽取 网格形变
原文传递
基于Candide-3模型的姿态表情人脸识别研究 被引量:1
13
作者 杜杏菁 白廷柱 何玉青 《计算机工程与设计》 CSCD 北大核心 2012年第3期1017-1021,共5页
针对姿态表情严重影响人脸识别准确率的问题,基于Candide-3模型的简化,提出了形状表情关键点拟合的人脸几何结构重建和基于三角网格模型的纹理映射的方法,该方法确定关键特征点,根据人脸的几何结构信息确定姿态角,提取Candide-3模型形... 针对姿态表情严重影响人脸识别准确率的问题,基于Candide-3模型的简化,提出了形状表情关键点拟合的人脸几何结构重建和基于三角网格模型的纹理映射的方法,该方法确定关键特征点,根据人脸的几何结构信息确定姿态角,提取Candide-3模型形状表情对应点,调整模型参数,进行几何结构重建;对几何结构中每个三角网格模型进行纹理影射,得到逼真的特定人脸模型。实验结果表明,该方法提高了人脸重建速度,达到减弱姿态表情对人脸识别影响的目的。 展开更多
关键词 姿态角确定 特征点提取 人脸重建 Candide-3模型 人脸表情
在线阅读 下载PDF
复杂干扰下线结构光三维扫描成像研究
14
作者 叶川 赵立明 +3 位作者 潘波 杨晗 王超 谢友春 《组合机床与自动化加工技术》 北大核心 2025年第1期15-19,27,共6页
针对不均匀环境光照及高亮度环境下对线激光三维扫描成像的影响,提出了一种基于显著性特征融合的线激光三维扫描成像方法。首先,为了降低工业环境中干扰,更好获取辅助光源调制信息,建立了激光视觉传感器的图像清晰度控制方法;其次,基于... 针对不均匀环境光照及高亮度环境下对线激光三维扫描成像的影响,提出了一种基于显著性特征融合的线激光三维扫描成像方法。首先,为了降低工业环境中干扰,更好获取辅助光源调制信息,建立了激光视觉传感器的图像清晰度控制方法;其次,基于辅助光源颜色通道及亮度特征,构建了显著性特征融合和最大熵模型的激光条纹可靠分割方法;最后,通过计算条纹梯度向量获取条纹法向方向,以条纹分布法向为依据融合灰度重心法对条纹中心线进行提取。实验表明,所提方法能够克服不均匀光照及高亮特征的不良影响,准确提取激光条纹中心,通过对标准工件进行三维重建测试,测量误差小于0.36 mm。 展开更多
关键词 三维成像 清晰度评价 显著性特征 图像分割 条纹中心提取
在线阅读 下载PDF
用变形雅可比(p=4,q=3)-傅立叶矩描述红花粉末的显微图像 被引量:1
15
作者 阿木古楞 哈斯苏荣 +1 位作者 利民 白明柱 《内蒙古农业大学学报(自然科学版)》 CAS 2006年第3期129-131,共3页
本文用变形雅可比(p=4,q=3)-傅立叶矩,对红花粉末花粉粒的几个显微特征点图像进行重建实验,当N=M=13时,各种图像的重建图像能够恢复原始图像的主要特征,可以很清楚地分辨相同图像的不同变形体。这说明PJFM's的图像特征抽取性能非常... 本文用变形雅可比(p=4,q=3)-傅立叶矩,对红花粉末花粉粒的几个显微特征点图像进行重建实验,当N=M=13时,各种图像的重建图像能够恢复原始图像的主要特征,可以很清楚地分辨相同图像的不同变形体。这说明PJFM's的图像特征抽取性能非常强。随着矩数量的增加图像重建质量提高,并且N=M=23以后,重建图像和原始图像基本相同。 展开更多
关键词 显微特征点 变形雅可比(p=4 q=3)-傅立叶矩 特征提取 蒙草药
在线阅读 下载PDF
An intelligent algorithm for identifying dropped blocks in wellbores
16
作者 Qian Wang Zixuan Yang +2 位作者 Chenxi Ye Wenbao Zhai Xiao Feng 《Natural Gas Industry B》 2025年第2期186-194,共9页
Real-time monitoring of wellbore stability during drilling is crucial for the early detection of instability and timely interventions.The cause and type of wellbore instability can be identified by analyzing the dropp... Real-time monitoring of wellbore stability during drilling is crucial for the early detection of instability and timely interventions.The cause and type of wellbore instability can be identified by analyzing the dropped blocks brought to the surface by the drilling fluid,enabling preventive measures to be taken.In this study,an image capture system with fully automated sorting and 3D scanning was developed to obtain the complete 3D point cloud data of dropping blocks.The raw data obtained were preprocessed using methods such as format conversion,down sampling,coordinate transformation,statistical filtering,and clustering.Feature extraction algorithms,including the principal component analysis bounding box method,triangular meshing method,triaxial projection method,local curvature method,and model segmentation projection method,were employed,which resulted in the extraction of 32 feature parameters from the point cloud data.An optimal machine learning algorithm was developed by training it with 10 machine learning algorithms and the block data collected in the field.The XGBoost algorithm was then used to optimize the feature parameters and improve the classification model.An intelligent,fully automated feature parameter extraction and classification system was developed and applied to classify the types of falling blocks in 12 sets of drilling field and laboratory experiments and to identify the causes of wellbore instability.An average accuracy of 93.9%was achieved.This system can thus enable the timely diagnosis and implementation of preventive and control measures for wellbore instability in the field. 展开更多
关键词 Wellbore instability Dropped block classification 3D scanning Point cloud data feature extraction Machine learning
在线阅读 下载PDF
基于GF-3全极化SAR影像多特征优选的水产养殖塘提取 被引量:5
17
作者 柳崇斌 徐佳 +1 位作者 王冬梅 陈媛媛 《农业工程学报》 EI CAS CSCD 北大核心 2022年第4期206-214,共9页
高分三号作为中国首颗民用高分辨率多极化合成孔径雷达卫星,为水产养殖用地监测提供了重要的数据源。为了充分利用GF-3全极化SAR影像,该研究提出了一种基于特征优选的全极化SAR影像养殖塘提取方法。首先通过极化分解和灰度共生矩阵方法... 高分三号作为中国首颗民用高分辨率多极化合成孔径雷达卫星,为水产养殖用地监测提供了重要的数据源。为了充分利用GF-3全极化SAR影像,该研究提出了一种基于特征优选的全极化SAR影像养殖塘提取方法。首先通过极化分解和灰度共生矩阵方法共获取了55维特征;然后对影像进行多尺度分割,并利用随机森林-递归特征消除(Random Forest-Recursive Feature Elimination,RF-RFE)算法进行特征优选;最后基于最优特征集进行随机森林分类提取了养殖塘。以南京固城湖和东台近海两个典型区为研究区,利用GF-3全极化数据进行养殖塘提取试验,结果表明,与单一极化分解方法相比,综合利用多种极化特征在一定程度上提高了总体分类精度,但仍然难以区分养殖水体和非养殖水;经过特征优选,香农熵SE及其强度分量SE_I对于养殖塘识别是很好的极化参数,而纹理特征Variance的引入有效减少了养殖水体和非养殖水体的错分;该研究方法与最大似然和支持向量机相比,总体精度最高,固城湖区域和东台近海区域分别为96.85%和94.60%,研究结果可为GF-3卫星在水产养殖塘提取方面的应用提供参考。 展开更多
关键词 养殖塘 信息提取 高分三号 极化分解 特征优选
在线阅读 下载PDF
A Lightweight Driver Drowsiness Detection System Using 3DCNN With LSTM 被引量:2
18
作者 Sara A.Alameen Areej M.Alhothali 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期895-912,共18页
Today,fatalities,physical injuries,and significant economic losses occur due to car accidents.Among the leading causes of car accidents is drowsiness behind the wheel,which can affect any driver.Drowsiness and sleepin... Today,fatalities,physical injuries,and significant economic losses occur due to car accidents.Among the leading causes of car accidents is drowsiness behind the wheel,which can affect any driver.Drowsiness and sleepiness often have associated indicators that researchers can use to identify and promptly warn drowsy drivers to avoid potential accidents.This paper proposes a spatiotemporal model for monitoring drowsiness visual indicators from videos.This model depends on integrating a 3D convolutional neural network(3D-CNN)and long short-term memory(LSTM).The 3DCNN-LSTM can analyze long sequences by applying the 3D-CNN to extract spatiotemporal features within adjacent frames.The learned features are then used as the input of the LSTM component for modeling high-level temporal features.In addition,we investigate how the training of the proposed model can be affected by changing the position of the batch normalization(BN)layers in the 3D-CNN units.The BN layer is examined in two different placement settings:before the non-linear activation function and after the non-linear activation function.The study was conducted on two publicly available drowsy drivers datasets named 3MDAD and YawDD.3MDAD is mainly composed of two synchronized datasets recorded from the frontal and side views of the drivers.We show that the position of the BN layers increases the convergence speed and reduces overfitting on one dataset but not the other.As a result,the model achieves a test detection accuracy of 96%,93%,and 90%on YawDD,Side-3MDAD,and Front-3MDAD,respectively. 展开更多
关键词 3d-cnn deep learning driver drowsiness detection LSTM spatiotemporal features
在线阅读 下载PDF
3D Model Retrieval Method Based on Affinity Propagation Clustering 被引量:2
19
作者 Lin Lin Xiao-Long Xie Fang-Yu Chen 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第3期12-21,共10页
In order to improve the accuracy and efficiency of 3D model retrieval,the method based on affinity propagation clustering algorithm is proposed. Firstly,projection ray-based method is proposed to improve the feature e... In order to improve the accuracy and efficiency of 3D model retrieval,the method based on affinity propagation clustering algorithm is proposed. Firstly,projection ray-based method is proposed to improve the feature extraction efficiency of 3D models. Based on the relationship between model and its projection,the intersection in 3D space is transformed into intersection in 2D space,which reduces the number of intersection and improves the efficiency of the extraction algorithm. In feature extraction,multi-layer spheres method is analyzed. The two-layer spheres method makes the feature vector more accurate and improves retrieval precision. Secondly,Semi-supervised Affinity Propagation ( S-AP) clustering is utilized because it can be applied to different cluster structures. The S-AP algorithm is adopted to find the center models and then the center model collection is built. During retrieval process,the collection is utilized to classify the query model into corresponding model base and then the most similar model is retrieved in the model base. Finally,75 sample models from Princeton library are selected to do the experiment and then 36 models are used for retrieval test. The results validate that the proposed method outperforms the original method and the retrieval precision and recall ratios are improved effectively. 展开更多
关键词 feature extraction project ray-based method affinity propagation clustering 3D model retrieval
在线阅读 下载PDF
Improved Lightweight Deep Learning Algorithm in 3D Reconstruction 被引量:1
20
作者 Tao Zhang Yi Cao 《Computers, Materials & Continua》 SCIE EI 2022年第9期5315-5325,共11页
The three-dimensional(3D)reconstruction technology based on structured light has been widely used in the field of industrial measurement due to its many advantages.Aiming at the problems of high mismatch rate and poor... The three-dimensional(3D)reconstruction technology based on structured light has been widely used in the field of industrial measurement due to its many advantages.Aiming at the problems of high mismatch rate and poor real-time performance caused by factors such as system jitter and noise,a lightweight stripe image feature extraction algorithm based on You Only Look Once v4(YOLOv4)network is proposed.First,Mobilenetv3 is used as the backbone network to effectively extract features,and then the Mish activation function and Complete Intersection over Union(CIoU)loss function are used to calculate the improved target frame regression loss,which effectively improves the accuracy and real-time performance of feature detection.Simulation experiment results show that the model size after the improved algorithm is only 52 MB,the mean average accuracy(mAP)of fringe image data reconstruction reaches 82.11%,and the 3D point cloud restoration rate reaches 90.1%.Compared with the existing model,it has obvious advantages and can satisfy the accuracy and real-time requirements of reconstruction tasks in resource-constrained equipment. 展开更多
关键词 3D reconstruction feature extraction deep learning LIGHTWEIGHT YOLOv4
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部