Piezoelectricity in native bones has been well recognized as the key factor in bone regeneration.Thus,bio-piezoelectric materials have gained substantial attention in repairing damaged bone by mimicking the tissue’s ...Piezoelectricity in native bones has been well recognized as the key factor in bone regeneration.Thus,bio-piezoelectric materials have gained substantial attention in repairing damaged bone by mimicking the tissue’s electrical microenvironment(EM).However,traditional manufacturing strategies still encounter limitations in creating personalized bio-piezoelectric scaffolds,hindering their clinical applications.Three-dimensional(3D)/four-dimensional(4D)printing technology based on the principle of layer-by-layer forming and stacking of discrete materials has demonstrated outstanding advantages in fabricating bio-piezoelectric scaffolds in a more complex-shaped structure.Notably,4D printing functionality-shifting bio-piezoelectric scaffolds can provide a time-dependent programmable tissue EM in response to external stimuli for bone regeneration.In this review,we first summarize the physicochemical properties of commonly used bio-piezoelectric materials(including polymers,ceramics,and their composites)and representative biological findings for bone regeneration.Then,we discuss the latest research advances in the 3D printing of bio-piezoelectric scaffolds in terms of feedstock selection,printing process,induction strategies,and potential applications.Besides,some related challenges such as feedstock scalability,printing resolution,stress-to-polarization conversion efficiency,and non-invasive induction ability after implantation have been put forward.Finally,we highlight the potential of shape/property/functionality-shifting smart 4D bio-piezoelectric scaffolds in bone tissue engineering(BTE).Taken together,this review emphasizes the appealing utility of 3D/4D printed biological piezoelectric scaffolds as next-generation BTE implants.展开更多
目的:通过3D/4D超声鼻唇表面成像,观察胎儿鼻唇部表面形态结构,排除鼻唇部表面异常。方法:使用VOLUSON GE 730及VOLUSON GE E8容积探头,通过对2063例孕22-25周胎儿进行3D/4D鼻唇部表面成像,要求清晰显示鼻尖、鼻柱、鼻翼、双鼻孔、鼻唇...目的:通过3D/4D超声鼻唇表面成像,观察胎儿鼻唇部表面形态结构,排除鼻唇部表面异常。方法:使用VOLUSON GE 730及VOLUSON GE E8容积探头,通过对2063例孕22-25周胎儿进行3D/4D鼻唇部表面成像,要求清晰显示鼻尖、鼻柱、鼻翼、双鼻孔、鼻唇沟、上下唇、下颌,观察胎儿鼻部形状、大小、结构、唇部完整性和连续性。结果:2063例孕22~25周胎儿中,获得清晰完整鼻唇3D/4D表面成像1689例,显示率为81.87%;获取部分鼻唇表面成像306例,显示率为14.83%;模糊或不能成像68例,占3.3%。结论:孕中期大部分胎儿3D/4D超声能获取鼻唇完整清晰表面成像,形象、逼真、直观显示鼻唇表面形态结构正常与否;掌握必要的检查方法、注意事项及技巧能提高鼻唇部清晰完整表面成像显示率。展开更多
The manufacturing of heterogeneous high-temperature material components is challenging for use in practical applications.Three-dimensional(3D)printing provides solutions to programmable constructing ceramic architectu...The manufacturing of heterogeneous high-temperature material components is challenging for use in practical applications.Three-dimensional(3D)printing provides solutions to programmable constructing ceramic architectures.However,the development of heterogeneous ceramics is limited by low flexibil-ity of heterogeneity,geometrical complexity,structural resolution,manufacturing efficiency,and mate-rial diversity.In this study,we demonstrated flexible and rapid approaches for fabricating complicated and precise heterogeneous ceramics by shape-changing(4D)or shape-keeping(3D)additive-subtractive manufacturing(ASM)methods.The shape-changing strategy for heterogeneous ceramics was achieved by global ceramization of heterogeneous precursors,while the shape-keeping strategy for heterogeneous ceramics was achieved by local receramization of homogeneous ceramics.Finite element analysis(FEA)simulations of the influence of the thermal shrinkage dominant in the shape-changing strategy on the shape deformation of heterogeneous ceramics could be valuable predictions of the experimental results.The 3D/4D ASM methods are generic for high-temperature materials and extendable to metallic and dia-mond materials.展开更多
The North China district has been subjected to significant research with regard to the ore-forming dynamics,processes,and quantitative forecasting of gold deposits;it accounts for the highest number of gold reserves a...The North China district has been subjected to significant research with regard to the ore-forming dynamics,processes,and quantitative forecasting of gold deposits;it accounts for the highest number of gold reserves and annual products in China.Based on the top-level design of geoscience theory and the method adopted by the National Key R&D Project(deep process and metallogenic mechanism of North China Craton(NCC)metallogenic system),this paper systematically collects and constructs the geoscience data(district,camp,and deposit scales)in four key gold districts of North China(Jiaojia-Sanshandao,Southern Zhaoping,Wulong,and Qingchengzi).The settings associated with the geological dynamics of gold deposits were quantitatively and synthetically analyzed,namely:NCC destruction,metallogenic events,genetic models,and exploration models.Three-dimensional(3D)and four-dimensional(4D)geological modeling was performed using the big data on the districts,while the district-scale 3D exploration criteria were integrated to construct a quantitative exploration model.Among them,FLAC3D modelling and the Geo Cube software(version 3.0)were used to implement the numerical simulation of the 3D geological models and the constraints of the fluid saturation parameters of the Jiaojia fault to reconstruct the 4D fault structure models of the Jiaojia fault(with a depth of 5000 m).Using Geo Cube3.0,multiple integration modules(general weights of evidence(Wof E),Boost Wof E,Fuzzy Wof E,Logistic Regression,Information Entropy,and Random Forest)and exploration criteria were integrated,while the C-V fractal classification of A,B and C targets in four districts was carried out.The research results are summarized in the following four areas:(1)Four gold districts in the study area have more than three targets(the depth is 3000 m),and the class A,B and C targets exhibit a good spatial correlation with gold bodies that are controlled by mining engineering at depths greater than 1000 m.(2)The Boost Wof E method was used to identify the target optimization in 3D spaces(at depths of 3000–5000 m)of the Jiaojia-Sanshandao,Southern Zhaoping,and Wulong districts.(3)The general Wof E method is based on the Bayesian theory in 3D space and provides robust integration and target optimization that are suitable for the Jiaojia-Sanshandao and Southern Zhaoping districts in the Jiaodong area;it can also be applied to the Wulong district in the Liaodong area using a quantitative genetic model and an exploration model.Random forest is a multi-objective integration and target optimization method for 3D spaces,and it is suitable for the complex exploration model in the Qingchengzi district of the Liaodong area.The genetic model and exploration criteria associated with the exploration model of the Qingchengzi district were constrained by the common characteristics of the gold fault structure,magmatic rock emplacement in North China,and the strata fold and interlayer detachment structure.(4)Based on the gold reserves and the 3D block unit model of the Sanshandao gold deposit in the Jiaojia-Sanshandao district,the gold contents of the 3D block units in class A and B targets of the ore concentration were estimated to be 65.5%and 25.1%,respectively.The total Au resources of the optimized targets below a depth of 3000 m were 3908 t(including 1700 t reserves),and the total Au resources of the targets at depths from 3000 to 5000 m were 936 t.The study shows that the deep gold deposits in the four gold districts of North China exhibit a strong"transport-deposition"spatial correlation with potential targets.These"transport-deposition"spatial models represent the tectonic-magmatic-hydrothermal activities of the metallogenic system associated with the NCC destruction events and indicate the Au enrichment zones.展开更多
Since the start of the Precision Medicine Initiative by the United States of America in 2015,interest in personalized medicine has grown extensively.In short,personalized medicine is a term that describes medical trea...Since the start of the Precision Medicine Initiative by the United States of America in 2015,interest in personalized medicine has grown extensively.In short,personalized medicine is a term that describes medical treatment that is tuned to the individual.One possible way to realize personalized medicine is 3D printing.When using materials that can be tuned upon stimulation,4D printing is established.In recent years,many studies have been exploring a new field that combines 3D and 4D printing with therapeutics.This has resulted in many concepts of pharmaceutical devices and formulations that can be printed and,possibly,tailored to an individual.Moreover,the first 3D printed drug,Spritam®,has already found its way to the clinic.This review gives an overview of various 3D and 4D printing techniques and their applications in the pharmaceutical field as drug delivery systems and personalized medicine.展开更多
Fibre-based wearables for embroidery,chemosensing,and biofluid’s unidirectional draining with goodflexibility,tunability,and designability drive technological advance.However,synthetic polymerfibres are non-degradabl...Fibre-based wearables for embroidery,chemosensing,and biofluid’s unidirectional draining with goodflexibility,tunability,and designability drive technological advance.However,synthetic polymerfibres are non-degradable,threatening the environment and human health.Herein,we have developed versatile microfibre-based wearables by combining many advantages in one platform of biodegradable polylactic acid(PLA)and melt electrowriting strategy.Diverse potential applications of PLA wearables are achieved byflexibly designing their printingfiles,components and structures.Three-dimensional printingfiles are generated from two-dimensional images to fabricate‘embroidery-like’patterns.PLA/aggregation-induced emissionfluorogens(AIE)chemosensors exhibit colorimetric andfluorescent colour changes upon exposure to amine vapours.Janus PLA-cotton textiles with a hydropho-bic/hydrophilic structure could facilitate unidirectional draining of sweats which is favourable for the management of temperature and humidity on the surface of skin.The proposed platform can not only broaden the design possibilities in 3D/4D printing but also offer wide potential applications for functional wearables.展开更多
In recent years,innovations in 3D/4D printing techniques for continuous fiber-reinforced polymer composites(CFRPCs)have opened new perspectives for the integrated design and manufacture of composites with customized f...In recent years,innovations in 3D/4D printing techniques for continuous fiber-reinforced polymer composites(CFRPCs)have opened new perspectives for the integrated design and manufacture of composites with customized functions.This paper reviews the current state of 3D/4D printed functional composites,including the materi-als,shape memory/changing effects,self-monitoring/healing behaviors,and challenges surrounding additive-manufactured functional composites.Specifically,continuous fibers and matrices that provide functional roles are classified and discussed in detail.4D printed shape memory and changing CFRPCs can retain their original shapes from a designed shape upon exposure to different external stimuli,including heat,electricity,humidity,and multi-stimuli activation.Furthermore,self-monitoring of structural health is achieved through the piezore-sistive features of reinforced fibers in 3D printed CFRPCs.Finally,this review concludes with an outlook on the future research opportunities for 3D/4D printed functional CFRPCs.展开更多
基金supported by grants from the National Natural Science Foundation of China(52205363)Fundamental Research Funds for the Central Universities(2019kfyRCPY044 and 2021GCRC002)+3 种基金Program for HUST Academic Frontier Youth Team(2018QYTD04)Program for Innovative Research Team of the Ministry of Education(IRT1244)Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Shenzhen Park Project:HZQB-KCZYB-2020030the Guangdong Provincial Department of Science and Technology(Key-Area Research and Development Program of Guangdong Province)under the Grant 2020B090923002。
文摘Piezoelectricity in native bones has been well recognized as the key factor in bone regeneration.Thus,bio-piezoelectric materials have gained substantial attention in repairing damaged bone by mimicking the tissue’s electrical microenvironment(EM).However,traditional manufacturing strategies still encounter limitations in creating personalized bio-piezoelectric scaffolds,hindering their clinical applications.Three-dimensional(3D)/four-dimensional(4D)printing technology based on the principle of layer-by-layer forming and stacking of discrete materials has demonstrated outstanding advantages in fabricating bio-piezoelectric scaffolds in a more complex-shaped structure.Notably,4D printing functionality-shifting bio-piezoelectric scaffolds can provide a time-dependent programmable tissue EM in response to external stimuli for bone regeneration.In this review,we first summarize the physicochemical properties of commonly used bio-piezoelectric materials(including polymers,ceramics,and their composites)and representative biological findings for bone regeneration.Then,we discuss the latest research advances in the 3D printing of bio-piezoelectric scaffolds in terms of feedstock selection,printing process,induction strategies,and potential applications.Besides,some related challenges such as feedstock scalability,printing resolution,stress-to-polarization conversion efficiency,and non-invasive induction ability after implantation have been put forward.Finally,we highlight the potential of shape/property/functionality-shifting smart 4D bio-piezoelectric scaffolds in bone tissue engineering(BTE).Taken together,this review emphasizes the appealing utility of 3D/4D printed biological piezoelectric scaffolds as next-generation BTE implants.
文摘目的:通过3D/4D超声鼻唇表面成像,观察胎儿鼻唇部表面形态结构,排除鼻唇部表面异常。方法:使用VOLUSON GE 730及VOLUSON GE E8容积探头,通过对2063例孕22-25周胎儿进行3D/4D鼻唇部表面成像,要求清晰显示鼻尖、鼻柱、鼻翼、双鼻孔、鼻唇沟、上下唇、下颌,观察胎儿鼻部形状、大小、结构、唇部完整性和连续性。结果:2063例孕22~25周胎儿中,获得清晰完整鼻唇3D/4D表面成像1689例,显示率为81.87%;获取部分鼻唇表面成像306例,显示率为14.83%;模糊或不能成像68例,占3.3%。结论:孕中期大部分胎儿3D/4D超声能获取鼻唇完整清晰表面成像,形象、逼真、直观显示鼻唇表面形态结构正常与否;掌握必要的检查方法、注意事项及技巧能提高鼻唇部清晰完整表面成像显示率。
基金supported by the Shenzhen-Hong Kong Sci-ence and Technology Innovation Cooperation Zone Shenzhen Park Project(grant No.HZQB-KCZYB-2020030)the Shenzhen Science and Technology Program:No.JCYJ20220818101204010+4 种基金the Re-search Grants Council of the Hong Kong Special Administrative Region,China(grant No.CityU PDFS2223-1S05)the Guangdong Provincial Department of Science and Technology(Key-Area Re-search and Development Program of Guangdong Province)(grant No.2020B090923002)the Major Program of Changsha Science and Technology Project(grant No.kh2003023)the Hong Kong In-novation and Technology Commission via the Hong Kong Branch of National Precious Metals Material Engineering Research Centerthe Research Grants Council of Hong Kong Special Administrative Region,China(grant No.AoE/M-402/20).
文摘The manufacturing of heterogeneous high-temperature material components is challenging for use in practical applications.Three-dimensional(3D)printing provides solutions to programmable constructing ceramic architectures.However,the development of heterogeneous ceramics is limited by low flexibil-ity of heterogeneity,geometrical complexity,structural resolution,manufacturing efficiency,and mate-rial diversity.In this study,we demonstrated flexible and rapid approaches for fabricating complicated and precise heterogeneous ceramics by shape-changing(4D)or shape-keeping(3D)additive-subtractive manufacturing(ASM)methods.The shape-changing strategy for heterogeneous ceramics was achieved by global ceramization of heterogeneous precursors,while the shape-keeping strategy for heterogeneous ceramics was achieved by local receramization of homogeneous ceramics.Finite element analysis(FEA)simulations of the influence of the thermal shrinkage dominant in the shape-changing strategy on the shape deformation of heterogeneous ceramics could be valuable predictions of the experimental results.The 3D/4D ASM methods are generic for high-temperature materials and extendable to metallic and dia-mond materials.
基金supported by the National Key R&D Program of China(Grant Nos.2016YFC0600107&2016YFC0600108)。
文摘The North China district has been subjected to significant research with regard to the ore-forming dynamics,processes,and quantitative forecasting of gold deposits;it accounts for the highest number of gold reserves and annual products in China.Based on the top-level design of geoscience theory and the method adopted by the National Key R&D Project(deep process and metallogenic mechanism of North China Craton(NCC)metallogenic system),this paper systematically collects and constructs the geoscience data(district,camp,and deposit scales)in four key gold districts of North China(Jiaojia-Sanshandao,Southern Zhaoping,Wulong,and Qingchengzi).The settings associated with the geological dynamics of gold deposits were quantitatively and synthetically analyzed,namely:NCC destruction,metallogenic events,genetic models,and exploration models.Three-dimensional(3D)and four-dimensional(4D)geological modeling was performed using the big data on the districts,while the district-scale 3D exploration criteria were integrated to construct a quantitative exploration model.Among them,FLAC3D modelling and the Geo Cube software(version 3.0)were used to implement the numerical simulation of the 3D geological models and the constraints of the fluid saturation parameters of the Jiaojia fault to reconstruct the 4D fault structure models of the Jiaojia fault(with a depth of 5000 m).Using Geo Cube3.0,multiple integration modules(general weights of evidence(Wof E),Boost Wof E,Fuzzy Wof E,Logistic Regression,Information Entropy,and Random Forest)and exploration criteria were integrated,while the C-V fractal classification of A,B and C targets in four districts was carried out.The research results are summarized in the following four areas:(1)Four gold districts in the study area have more than three targets(the depth is 3000 m),and the class A,B and C targets exhibit a good spatial correlation with gold bodies that are controlled by mining engineering at depths greater than 1000 m.(2)The Boost Wof E method was used to identify the target optimization in 3D spaces(at depths of 3000–5000 m)of the Jiaojia-Sanshandao,Southern Zhaoping,and Wulong districts.(3)The general Wof E method is based on the Bayesian theory in 3D space and provides robust integration and target optimization that are suitable for the Jiaojia-Sanshandao and Southern Zhaoping districts in the Jiaodong area;it can also be applied to the Wulong district in the Liaodong area using a quantitative genetic model and an exploration model.Random forest is a multi-objective integration and target optimization method for 3D spaces,and it is suitable for the complex exploration model in the Qingchengzi district of the Liaodong area.The genetic model and exploration criteria associated with the exploration model of the Qingchengzi district were constrained by the common characteristics of the gold fault structure,magmatic rock emplacement in North China,and the strata fold and interlayer detachment structure.(4)Based on the gold reserves and the 3D block unit model of the Sanshandao gold deposit in the Jiaojia-Sanshandao district,the gold contents of the 3D block units in class A and B targets of the ore concentration were estimated to be 65.5%and 25.1%,respectively.The total Au resources of the optimized targets below a depth of 3000 m were 3908 t(including 1700 t reserves),and the total Au resources of the targets at depths from 3000 to 5000 m were 936 t.The study shows that the deep gold deposits in the four gold districts of North China exhibit a strong"transport-deposition"spatial correlation with potential targets.These"transport-deposition"spatial models represent the tectonic-magmatic-hydrothermal activities of the metallogenic system associated with the NCC destruction events and indicate the Au enrichment zones.
文摘Since the start of the Precision Medicine Initiative by the United States of America in 2015,interest in personalized medicine has grown extensively.In short,personalized medicine is a term that describes medical treatment that is tuned to the individual.One possible way to realize personalized medicine is 3D printing.When using materials that can be tuned upon stimulation,4D printing is established.In recent years,many studies have been exploring a new field that combines 3D and 4D printing with therapeutics.This has resulted in many concepts of pharmaceutical devices and formulations that can be printed and,possibly,tailored to an individual.Moreover,the first 3D printed drug,Spritam®,has already found its way to the clinic.This review gives an overview of various 3D and 4D printing techniques and their applications in the pharmaceutical field as drug delivery systems and personalized medicine.
基金Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Shenzhen Park Project,Grant/Award Number:HZQB-KCZYB-2020030Hong Kong RGC Theme-based Research Scheme,Grant/Award Number:AoE/M-402/20Shenzhen Science and Technology Program,Grant/Award Number:JCYJ20220818101204010。
文摘Fibre-based wearables for embroidery,chemosensing,and biofluid’s unidirectional draining with goodflexibility,tunability,and designability drive technological advance.However,synthetic polymerfibres are non-degradable,threatening the environment and human health.Herein,we have developed versatile microfibre-based wearables by combining many advantages in one platform of biodegradable polylactic acid(PLA)and melt electrowriting strategy.Diverse potential applications of PLA wearables are achieved byflexibly designing their printingfiles,components and structures.Three-dimensional printingfiles are generated from two-dimensional images to fabricate‘embroidery-like’patterns.PLA/aggregation-induced emissionfluorogens(AIE)chemosensors exhibit colorimetric andfluorescent colour changes upon exposure to amine vapours.Janus PLA-cotton textiles with a hydropho-bic/hydrophilic structure could facilitate unidirectional draining of sweats which is favourable for the management of temperature and humidity on the surface of skin.The proposed platform can not only broaden the design possibilities in 3D/4D printing but also offer wide potential applications for functional wearables.
基金supported by National Natural Science Foundation of China(Grant No.51905555)Hu-Xiang Youth Talent Program of China(Grant No.2020RC3009)+1 种基金Hunan Provincial Science Foundation for Distinguished Young Scholars of China(Grant No.2021JJ10059)The first author gratefully acknowledges the financial support from the China Scholarship Council(Grant No.202206370135).
文摘In recent years,innovations in 3D/4D printing techniques for continuous fiber-reinforced polymer composites(CFRPCs)have opened new perspectives for the integrated design and manufacture of composites with customized functions.This paper reviews the current state of 3D/4D printed functional composites,including the materi-als,shape memory/changing effects,self-monitoring/healing behaviors,and challenges surrounding additive-manufactured functional composites.Specifically,continuous fibers and matrices that provide functional roles are classified and discussed in detail.4D printed shape memory and changing CFRPCs can retain their original shapes from a designed shape upon exposure to different external stimuli,including heat,electricity,humidity,and multi-stimuli activation.Furthermore,self-monitoring of structural health is achieved through the piezore-sistive features of reinforced fibers in 3D printed CFRPCs.Finally,this review concludes with an outlook on the future research opportunities for 3D/4D printed functional CFRPCs.