A 3D/0D cobalt-embedded nitrogen-doped porous carbon nanocubes(Co-N-C)/supramolecular tetra(4-carboxylphenyl)porphyrin nanocrystals(SA-TCPP)photocatalyst was successfully self-assembled viaπ–πinteraction,hydrogen b...A 3D/0D cobalt-embedded nitrogen-doped porous carbon nanocubes(Co-N-C)/supramolecular tetra(4-carboxylphenyl)porphyrin nanocrystals(SA-TCPP)photocatalyst was successfully self-assembled viaπ–πinteraction,hydrogen bonding,and chemical bonding.Co-N-C/SA-TCPP heterostructure exhibited satisfactory visible photocatalytic oxidation performance on pollutant degradation and water evolution.The degradation rates of Co-N-C/ST(30%)composite towards 2,4-dichlorophenol,ofloxacin,and ethylene were10.9,7.2,and 2.1 times faster than SA-TCPP,respectively.The oxygen evolution efficiency was 1.9 times higher than SA-TCPP.The remarkably improved oxidation activities of Co-N-C/SA-TCPP were mainly ascribed to the following reasons:(1)Co-N-C could enhance the light absorption ability of SA-TCPP to produce more photoinduced carriers.(2)The well-developed porosity of Co-N-C could optimize the dispersibility of SA-TCPP to provide more reactive sites and charge separation channels.(3)Theπ–πinteraction between SA-TCPP and Co-N-C was beneficial to interlayer charge mobility,while the embedded cobalt nanoparticles(Co NPs)and N-doped carbon matrix could serve as electron traps to accelerate interfacial electron transfer.Additionally,the ferromagnetic Co NPs endowed Co-N-C/SA-TCPP with magnetic-separation function to promote recyclability in practical application.展开更多
基金the Jiangsu Agriculture Science and Technology Innovation Fund(No.CX(20)3108)the National Natural Science Foundation of China(Nos.21707052,31871881,21908079,and 22172065)+3 种基金the Fundamental Research Funds for the Central Universities(No.JUSRP11905)the Key Research and Development Program of Jiangsu Province(No.BE2017623)the Natural Science Foundation of Jiangsu Province(Nos.BK20211239 and BK20201345)the National First-class Discipline Program of Food Science and Technology(No.JUFSTR20180303)。
文摘A 3D/0D cobalt-embedded nitrogen-doped porous carbon nanocubes(Co-N-C)/supramolecular tetra(4-carboxylphenyl)porphyrin nanocrystals(SA-TCPP)photocatalyst was successfully self-assembled viaπ–πinteraction,hydrogen bonding,and chemical bonding.Co-N-C/SA-TCPP heterostructure exhibited satisfactory visible photocatalytic oxidation performance on pollutant degradation and water evolution.The degradation rates of Co-N-C/ST(30%)composite towards 2,4-dichlorophenol,ofloxacin,and ethylene were10.9,7.2,and 2.1 times faster than SA-TCPP,respectively.The oxygen evolution efficiency was 1.9 times higher than SA-TCPP.The remarkably improved oxidation activities of Co-N-C/SA-TCPP were mainly ascribed to the following reasons:(1)Co-N-C could enhance the light absorption ability of SA-TCPP to produce more photoinduced carriers.(2)The well-developed porosity of Co-N-C could optimize the dispersibility of SA-TCPP to provide more reactive sites and charge separation channels.(3)Theπ–πinteraction between SA-TCPP and Co-N-C was beneficial to interlayer charge mobility,while the embedded cobalt nanoparticles(Co NPs)and N-doped carbon matrix could serve as electron traps to accelerate interfacial electron transfer.Additionally,the ferromagnetic Co NPs endowed Co-N-C/SA-TCPP with magnetic-separation function to promote recyclability in practical application.