期刊文献+
共找到2,851篇文章
< 1 2 143 >
每页显示 20 50 100
Rock discontinuity extraction from 3D point clouds using pointwise clustering algorithm
1
作者 Xiaoyu Yi Wenxuan Wu +2 位作者 Wenkai Feng Yongjian Zhou Jiachen Zhao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4429-4444,共16页
Recognizing discontinuities within rock masses is a critical aspect of rock engineering.The development of remote sensing technologies has significantly enhanced the quality and quantity of the point clouds collected ... Recognizing discontinuities within rock masses is a critical aspect of rock engineering.The development of remote sensing technologies has significantly enhanced the quality and quantity of the point clouds collected from rock outcrops.In response,we propose a workflow that balances accuracy and efficiency to extract discontinuities from massive point clouds.The proposed method employs voxel filtering to downsample point clouds,constructs a point cloud topology using K-d trees,utilizes principal component analysis to calculate the point cloud normals,and employs the pointwise clustering(PWC)algorithm to extract discontinuities from rock outcrop point clouds.This method provides information on the location and orientation(dip direction and dip angle)of the discontinuities,and the modified whale optimization algorithm(MWOA)is utilized to identify major discontinuity sets and their average orientations.Performance evaluations based on three real cases demonstrate that the proposed method significantly reduces computational time costs without sacrificing accuracy.In particular,the method yields more reasonable extraction results for discontinuities with certain undulations.The presented approach offers a novel tool for efficiently extracting discontinuities from large-scale point clouds. 展开更多
关键词 Rock mass discontinuity 3d point clouds pointwise clustering(PWC)algorithm Modified whale optimization algorithm(MWOA)
在线阅读 下载PDF
Automatic identification of discontinuities and refined modeling of rock blocks from 3D point cloud data of rock surfaces
2
作者 Yaopeng Ji Shengyuan Song +5 位作者 Jianping Chen Jingyu Xue Jianhua Yan Yansong Zhang Di Sun Qing Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期3093-3106,共14页
The spatial distribution of discontinuities and the size of rock blocks are the key indicators for rock mass quality evaluation and rockfall risk assessment.Traditional manual measurement is often dangerous or unreach... The spatial distribution of discontinuities and the size of rock blocks are the key indicators for rock mass quality evaluation and rockfall risk assessment.Traditional manual measurement is often dangerous or unreachable at some high-steep rock slopes.In contrast,unmanned aerial vehicle(UAV)photogrammetry is not limited by terrain conditions,and can efficiently collect high-precision three-dimensional(3D)point clouds of rock masses through all-round and multiangle photography for rock mass characterization.In this paper,a new method based on a 3D point cloud is proposed for discontinuity identification and refined rock block modeling.The method is based on four steps:(1)Establish a point cloud spatial topology,and calculate the point cloud normal vector and average point spacing based on several machine learning algorithms;(2)Extract discontinuities using the density-based spatial clustering of applications with noise(DBSCAN)algorithm and fit the discontinuity plane by combining principal component analysis(PCA)with the natural breaks(NB)method;(3)Propose a method of inserting points in the line segment to generate an embedded discontinuity point cloud;and(4)Adopt a Poisson reconstruction method for refined rock block modeling.The proposed method was applied to an outcrop of an ultrahigh steep rock slope and compared with the results of previous studies and manual surveys.The results show that the method can eliminate the influence of discontinuity undulations on the orientation measurement and describe the local concave-convex characteristics on the modeling of rock blocks.The calculation results are accurate and reliable,which can meet the practical requirements of engineering. 展开更多
关键词 Three-dimensional(3d)point cloud Rock mass Automatic identification Refined modeling Unmanned aerial vehicle(UAV)
在线阅读 下载PDF
SGT-Net: A Transformer-Based Stratified Graph Convolutional Network for 3D Point Cloud Semantic Segmentation
3
作者 Suyi Liu Jianning Chi +2 位作者 Chengdong Wu Fang Xu Xiaosheng Yu 《Computers, Materials & Continua》 SCIE EI 2024年第6期4471-4489,共19页
In recent years,semantic segmentation on 3D point cloud data has attracted much attention.Unlike 2D images where pixels distribute regularly in the image domain,3D point clouds in non-Euclidean space are irregular and... In recent years,semantic segmentation on 3D point cloud data has attracted much attention.Unlike 2D images where pixels distribute regularly in the image domain,3D point clouds in non-Euclidean space are irregular and inherently sparse.Therefore,it is very difficult to extract long-range contexts and effectively aggregate local features for semantic segmentation in 3D point cloud space.Most current methods either focus on local feature aggregation or long-range context dependency,but fail to directly establish a global-local feature extractor to complete the point cloud semantic segmentation tasks.In this paper,we propose a Transformer-based stratified graph convolutional network(SGT-Net),which enlarges the effective receptive field and builds direct long-range dependency.Specifically,we first propose a novel dense-sparse sampling strategy that provides dense local vertices and sparse long-distance vertices for subsequent graph convolutional network(GCN).Secondly,we propose a multi-key self-attention mechanism based on the Transformer to further weight augmentation for crucial neighboring relationships and enlarge the effective receptive field.In addition,to further improve the efficiency of the network,we propose a similarity measurement module to determine whether the neighborhood near the center point is effective.We demonstrate the validity and superiority of our method on the S3DIS and ShapeNet datasets.Through ablation experiments and segmentation visualization,we verify that the SGT model can improve the performance of the point cloud semantic segmentation. 展开更多
关键词 3d point cloud semantic segmentation long-range contexts global-local feature graph convolutional network dense-sparse sampling strategy
在线阅读 下载PDF
Research on BIM Model Reshaping Method Based on 3D Point Cloud Recognition
4
作者 SHI Jin-yu YU Xian-feng +1 位作者 SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第4期125-135,共11页
In view of the limitations of traditional measurement methods in the field of building information,such as complex operation,low timeliness and poor accuracy,a new way of combining three-dimensional scanning technolog... In view of the limitations of traditional measurement methods in the field of building information,such as complex operation,low timeliness and poor accuracy,a new way of combining three-dimensional scanning technology and BIM(Building Information Modeling)model was discussed.Focused on the efficient acquisition of building geometric information using the fast-developing 3D point cloud technology,an improved deep learning-based 3D point cloud recognition method was proposed.The method optimised the network structure based on RandLA-Net to adapt to the large-scale point cloud processing requirements,while the semantic and instance features of the point cloud were integrated to significantly improve the recognition accuracy and provide a precise basis for BIM model remodeling.In addition,a visual BIM model generation system was developed,which systematically transformed the point cloud recognition results into BIM component parameters,automatically constructed BIM models,and promoted the open sharing and secondary development of models.The research results not only effectively promote the automation process of converting 3D point cloud data to refined BIM models,but also provide important technical support for promoting building informatisation and accelerating the construction of smart cities,showing a wide range of application potential and practical value. 展开更多
关键词 3d point cloud RandLA-Net network BIM model OSG engine
在线阅读 下载PDF
A Fast Compression Framework Based on 3D Point Cloud Data for Telepresence 被引量:3
5
作者 Zun-Ran Wang Chen-Guang Yang Shi-Lu Dai 《International Journal of Automation and computing》 EI CSCD 2020年第6期855-866,共12页
In this paper,a novel compression framework based on 3D point cloud data is proposed for telepresence,which consists of two parts.One is implemented to remove the spatial redundancy,i.e.,a robust Bayesian framework is... In this paper,a novel compression framework based on 3D point cloud data is proposed for telepresence,which consists of two parts.One is implemented to remove the spatial redundancy,i.e.,a robust Bayesian framework is designed to track the human motion and the 3D point cloud data of the human body is acquired by using the tracking 2D box.The other part is applied to remove the temporal redundancy of the 3D point cloud data.The temporal redundancy between point clouds is removed by using the motion vector,i.e.,the most similar cluster in the previous frame is found for the cluster in the current frame by comparing the cluster feature and the cluster in the current frame is replaced by the motion vector for compressing the current frame.The hrst,the B-SHOT(binary signatures of histograms orientation)descriptor is applied to represent the point feature for matching the corresponding point between two frames.The second,the K-mean algorithm is used to generate the cluster because there are a lot of unsuccessfully matched points in the current frame.The matching operation is exploited to find the corresponding clusters between the point cloud data of two frames.Finally,the cluster information in the current frame is replaced by the motion vector for compressing the current frame and the unsuccessfully matched clusters in the curren t and the motion vectors are transmit ted into the rem ote end.In order to reduce calculation time of the B-SHOT descriptor,we introduce an octree structure into the B-SHOT descriptor.In particular,in order to improve the robustness of the matching operation,we design the cluster feature to estimate the similarity bet ween two clusters.Experimen tai results have shown the bet ter performance of the proposed method due to the lower calculation time and the higher compression ratio.The proposed met hod achieves the compression ratio of 8.42 and the delay time of 1228 ms compared with the compression ratio of 5.99 and the delay time of 2163 ms in the octree-based compression method under conditions of similar distortion rate. 展开更多
关键词 3d point cloud compression motion estimation signatures of histograms orientation 3d point cloud matching predicted frame and intra frame.
原文传递
Automated Rock Detection and Shape Analysis from Mars Rover Imagery and 3D Point Cloud Data 被引量:10
6
作者 邸凯昌 岳宗玉 +1 位作者 刘召芹 王树良 《Journal of Earth Science》 SCIE CAS CSCD 2013年第1期125-135,共11页
A new object-oriented method has been developed for the extraction of Mars rocks from Mars rover data. It is based on a combination of Mars rover imagery and 3D point cloud data. First, Navcam or Pancam images taken b... A new object-oriented method has been developed for the extraction of Mars rocks from Mars rover data. It is based on a combination of Mars rover imagery and 3D point cloud data. First, Navcam or Pancam images taken by the Mars rovers are segmented into homogeneous objects with a mean-shift algorithm. Then, the objects in the segmented images are classified into small rock candidates, rock shadows, and large objects. Rock shadows and large objects are considered as the regions within which large rocks may exist. In these regions, large rock candidates are extracted through ground-plane fitting with the 3D point cloud data. Small and large rock candidates are combined and postprocessed to obtain the final rock extraction results. The shape properties of the rocks (angularity, circularity, width, height, and width-height ratio) have been calculated for subsequent ~eological studies. 展开更多
关键词 Mars rover rock extraction rover image 3d point cloud data.
原文传递
Hand Gesture Recognition Using Appearance Features Based on 3D Point Cloud 被引量:2
7
作者 Yanwen Chong Jianfeng Huang Shaoming Pan 《Journal of Software Engineering and Applications》 2016年第4期103-111,共9页
This paper presents a method for hand gesture recognition based on 3D point cloud. Digital image processing technology is used in this research. Based on the 3D point from depth camera, the system firstly extracts som... This paper presents a method for hand gesture recognition based on 3D point cloud. Digital image processing technology is used in this research. Based on the 3D point from depth camera, the system firstly extracts some raw data of the hand. After the data segmentation and preprocessing, three kinds of appearance features are extracted, including the number of stretched fingers, the angles between fingers and the gesture region’s area distribution feature. Based on these features, the system implements the identification of the gestures by using decision tree method. The results of experiment demonstrate that the proposed method is pretty efficient to recognize common gestures with a high accuracy. 展开更多
关键词 Human-Computer-Interaction Gesture Recognition 3d point cloud Depth Image
在线阅读 下载PDF
3D Point Cloud Matching Based Selfie Generation for Chang'e-5
8
作者 Xiao-Rui Chen Meng-Fei Yang +10 位作者 Gao Zhang Wu Zhang Jing Peng Zheng Gu Xiang-Jin Deng Liu-Zhi Yang Fei Yang Yun Yang Shou-Qian Sun Ruo-Feng Tong Min Tang 《Journal of Computer Science & Technology》 2025年第1期85-98,共14页
Generating selfie images on the surface of a celestial body poses several challenges,including the position of the robotic arm,camera field of view,and limited shooting time.To address these challenges,the PCMIS(3D Po... Generating selfie images on the surface of a celestial body poses several challenges,including the position of the robotic arm,camera field of view,and limited shooting time.To address these challenges,the PCMIS(3D Point Cloud Matching Based Image Stitching)algorithm is designed,along with a corresponding shooting plan.This algorithm establishes a correspondence between depth and color information,enabling the generation of stitching views under any given view parameter.Furthermore,the algorithm is accelerated using GPU processing,resulting in a significant reduction in stitching time.The algorithm is successfully applied to generate selfie images for the Chang'e-5 mission. 展开更多
关键词 image stitching 3d point cloud matching Chang'e-5 GPU computing selfie generation
原文传递
Algorithm for 3D point cloud steganalysis based on composite operator feature enhancement
9
作者 Shuai REN Hao GONG Suya ZHENG 《Frontiers of Information Technology & Electronic Engineering》 2025年第1期62-78,共17页
Three-dimensional (3D) point cloud information hiding algorithms are mainly concentrated in the spatialdomain. Existing spatial domain steganalysis algorithms are subject to more disturbing factors during the analysis... Three-dimensional (3D) point cloud information hiding algorithms are mainly concentrated in the spatialdomain. Existing spatial domain steganalysis algorithms are subject to more disturbing factors during the analysisand detection process, and can only be applied to 3D mesh objects, so there is a lack of steganalysis algorithms for 3Dpoint cloud objects. To change the fact that steganalysis is limited to 3D mesh and eliminate the redundant featuresin the 3D mesh steganalysis feature set, we propose a 3D point cloud steganalysis algorithm based on compositeoperator feature enhancement. First, the 3D point cloud is normalized and smoothed. Second, the feature pointsthat may contain secret information in 3D point clouds and their neighboring points are extracted as the featureenhancement region by the improved 3DHarris-ISS composite operator. Feature enhancement is performed in thefeature enhancement region to form a feature-enhanced 3D point cloud, which highlights the feature points whilesuppressing the interference created by the rest of the vertices. Third, the existing 3D mesh feature set is screenedto reduce the data redundancy of more relevant features, and the newly proposed local neighborhood feature setis added to the screened feature set to form the 3D point cloud steganography feature set POINT72. Finally,the steganographic features are extracted from the enhanced 3D point cloud using the POINT72 feature set, andsteganalysis experiments are carried out. Experimental analysis shows that the algorithm can accurately analyzethe 3D point cloud’s spatial steganography and determine whether the 3D point cloud contains hidden information,so the accuracy of 3D point cloud steganalysis, under the prerequisite of missing edge and face information, is closeto that of the existing 3D mesh steganalysis algorithms. 展开更多
关键词 STEGANALYSIS 3d point cloud Feature enhancement Feature set filtering
原文传递
3D Distinct Element Back Analysis Based on Rock Structure Modelling of SfM Point Clouds:The Case of the 2019 Pinglu Rockfall of Kaili,China
10
作者 Zhen Ye Qiang Xu +2 位作者 Qian Liu Xiujun Dong Feng Pu 《Journal of Earth Science》 SCIE CAS CSCD 2024年第5期1568-1582,共15页
This paper introduces the use of point cloud processing for extracting 3D rock structure and the 3DEC-related reconstruction of slope failure,based on a case study of the 2019 Pinglu rockfall.The basic processing proc... This paper introduces the use of point cloud processing for extracting 3D rock structure and the 3DEC-related reconstruction of slope failure,based on a case study of the 2019 Pinglu rockfall.The basic processing procedure involves:(1)computing the point normal for HSV-rendering of point cloud;(2)automatically clustering the discontinuity sets;(3)extracting the set-based point clouds;(4)estimating of set-based mean orientation,spacing,and persistence;(5)identifying the block-forming arrays of discontinuity sets for the assessment of stability.The effectiveness of our rock structure processing has been proved by 3D distinct element back analysis.The results show that Sf M modelling and rock structure computing provides enormous cost,time and safety incentives in standard engineering practice. 展开更多
关键词 unmanned aerial vehicle(UAV) 3d point cloud rock structure KARST discontinuity sets engineeringgeology
原文传递
A human-machine interaction method for rock discontinuities mapping by three-dimensional point clouds with noises
11
作者 Qian Chen Yunfeng Ge +3 位作者 Changdong Li Huiming Tang Geng Liu Weixiang Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1646-1663,共18页
Rock discontinuities control rock mechanical behaviors and significantly influence the stability of rock masses.However,existing discontinuity mapping algorithms are susceptible to noise,and the calculation results ca... Rock discontinuities control rock mechanical behaviors and significantly influence the stability of rock masses.However,existing discontinuity mapping algorithms are susceptible to noise,and the calculation results cannot be fed back to users timely.To address this issue,we proposed a human-machine interaction(HMI)method for discontinuity mapping.Users can help the algorithm identify the noise and make real-time result judgments and parameter adjustments.For this,a regular cube was selected to illustrate the workflows:(1)point cloud was acquired using remote sensing;(2)the HMI method was employed to select reference points and angle thresholds to detect group discontinuity;(3)individual discontinuities were extracted from the group discontinuity using a density-based cluster algorithm;and(4)the orientation of each discontinuity was measured based on a plane fitting algorithm.The method was applied to a well-studied highway road cut and a complex natural slope.The consistency of the computational results with field measurements demonstrates its good accuracy,and the average error in the dip direction and dip angle for both cases was less than 3.Finally,the computational time of the proposed method was compared with two other popular algorithms,and the reduction in computational time by tens of times proves its high computational efficiency.This method provides geologists and geological engineers with a new idea to map rapidly and accurately rock structures under large amounts of noises or unclear features. 展开更多
关键词 Rock discontinuities Three-dimensional(3d)point clouds Discontinuity identification Orientation measurement Human-machine interaction
在线阅读 下载PDF
A Random Fusion of Mix 3D and Polar Mix to Improve Semantic Segmentation Performance in 3D Lidar Point Cloud
12
作者 Bo Liu Li Feng Yufeng Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期845-862,共18页
This paper focuses on the effective utilization of data augmentation techniques for 3Dlidar point clouds to enhance the performance of neural network models.These point clouds,which represent spatial information throu... This paper focuses on the effective utilization of data augmentation techniques for 3Dlidar point clouds to enhance the performance of neural network models.These point clouds,which represent spatial information through a collection of 3D coordinates,have found wide-ranging applications.Data augmentation has emerged as a potent solution to the challenges posed by limited labeled data and the need to enhance model generalization capabilities.Much of the existing research is devoted to crafting novel data augmentation methods specifically for 3D lidar point clouds.However,there has been a lack of focus on making the most of the numerous existing augmentation techniques.Addressing this deficiency,this research investigates the possibility of combining two fundamental data augmentation strategies.The paper introduces PolarMix andMix3D,two commonly employed augmentation techniques,and presents a new approach,named RandomFusion.Instead of using a fixed or predetermined combination of augmentation methods,RandomFusion randomly chooses one method from a pool of options for each instance or sample.This innovative data augmentation technique randomly augments each point in the point cloud with either PolarMix or Mix3D.The crux of this strategy is the random choice between PolarMix and Mix3Dfor the augmentation of each point within the point cloud data set.The results of the experiments conducted validate the efficacy of the RandomFusion strategy in enhancing the performance of neural network models for 3D lidar point cloud semantic segmentation tasks.This is achieved without compromising computational efficiency.By examining the potential of merging different augmentation techniques,the research contributes significantly to a more comprehensive understanding of how to utilize existing augmentation methods for 3D lidar point clouds.RandomFusion data augmentation technique offers a simple yet effective method to leverage the diversity of augmentation techniques and boost the robustness of models.The insights gained from this research can pave the way for future work aimed at developing more advanced and efficient data augmentation strategies for 3D lidar point cloud analysis. 展开更多
关键词 3d lidar point cloud data augmentation RandomFusion semantic segmentation
在线阅读 下载PDF
A LiDAR Point Clouds Dataset of Ships in a Maritime Environment 被引量:1
13
作者 Qiuyu Zhang Lipeng Wang +2 位作者 Hao Meng Wen Zhang Genghua Huang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第7期1681-1694,共14页
For the first time, this article introduces a LiDAR Point Clouds Dataset of Ships composed of both collected and simulated data to address the scarcity of LiDAR data in maritime applications. The collected data are ac... For the first time, this article introduces a LiDAR Point Clouds Dataset of Ships composed of both collected and simulated data to address the scarcity of LiDAR data in maritime applications. The collected data are acquired using specialized maritime LiDAR sensors in both inland waterways and wide-open ocean environments. The simulated data is generated by placing a ship in the LiDAR coordinate system and scanning it with a redeveloped Blensor that emulates the operation of a LiDAR sensor equipped with various laser beams. Furthermore,we also render point clouds for foggy and rainy weather conditions. To describe a realistic shipping environment, a dynamic tail wave is modeled by iterating the wave elevation of each point in a time series. Finally, networks serving small objects are migrated to ship applications by feeding our dataset. The positive effect of simulated data is described in object detection experiments, and the negative impact of tail waves as noise is verified in single-object tracking experiments. The Dataset is available at https://github.com/zqy411470859/ship_dataset. 展开更多
关键词 3d point clouds dataset dynamic tail wave fog simulation rainy simulation simulated data
在线阅读 下载PDF
基于3D点云的平面角接焊缝特征提取与运动跟踪 被引量:1
14
作者 吴海彬 黄浯锴 《东北大学学报(自然科学版)》 北大核心 2025年第6期93-101,共9页
提出一种基于3D点云的平面角接焊缝特征提取与轨迹规划策略,用于解决焊缝的自动识别与机器人自动跟踪焊接.首先,基于差异点云分割方法提取待焊工件,并进行点云预处理.其次,为获得焊缝特征点,提出了工件结构分割特征提取算法.接着基于非... 提出一种基于3D点云的平面角接焊缝特征提取与轨迹规划策略,用于解决焊缝的自动识别与机器人自动跟踪焊接.首先,基于差异点云分割方法提取待焊工件,并进行点云预处理.其次,为获得焊缝特征点,提出了工件结构分割特征提取算法.接着基于非均匀有理B样条(NURBS)曲线的路径拟合方法进行拟合.最后,提出一种焊接点位的机器人位姿估计方法,得到各路径点位姿以供焊接.该策略适用于直线与各种平面曲线焊缝.实验结果表明,该策略能够精确地提取角接焊缝位置并生成所需的轨迹点位姿,各轴最大误差控制在1 mm之内,总耗时不超过18 s,为高效自动化焊接提供参考. 展开更多
关键词 3d点云 角接焊缝 特征提取 位姿估计 自动焊接
在线阅读 下载PDF
GridNet:efficiently learning deep hierarchical representation for 3D point cloud understanding 被引量:2
15
作者 Huiqun WANG Di HUANG Yunhong WANG 《Frontiers of Computer Science》 SCIE EI CSCD 2022年第1期1-9,共9页
In this paper,we propose a novel and effective approach,namely GridNet,to hierarchically learn deep representation of 3D point clouds.It incorporates the ability of regular holistic description and fast data processin... In this paper,we propose a novel and effective approach,namely GridNet,to hierarchically learn deep representation of 3D point clouds.It incorporates the ability of regular holistic description and fast data processing in a single framework,which is able to abstract powerful features progressively in an efficient way.Moreover,to capture more accurate internal geometry attributes,anchors are inferred within local neighborhoods,in contrast to the fixed or the sampled ones used in existing methods,and the learned features are thus more representative and discriminative to local point distribution.GridNet delivers very competitive results compared with the state of the art methods in both the object classification and segmentation tasks. 展开更多
关键词 3d point clouds deep representations
原文传递
Compact and indexed representation for LiDAR point clouds
16
作者 Susana Ladra Miguel R.Luaces +1 位作者 José R.Paramá Fernando Silva-Coira 《Geo-Spatial Information Science》 CSCD 2024年第4期1035-1070,共36页
LiDAR devices are capable of acquiring clouds of 3D points reflecting any object around them,and adding additional attributes to each point such as color,position,time,etc.LiDAR datasets are usually large,and compress... LiDAR devices are capable of acquiring clouds of 3D points reflecting any object around them,and adding additional attributes to each point such as color,position,time,etc.LiDAR datasets are usually large,and compressed data formats(e.g.LAZ)have been proposed over the years.These formats are capable of transparently decompressing portions of the data,but they are not focused on solving general queries over the data.In contrast to that traditional approach,a new recent research line focuses on designing data structures that combine compression and indexation,allowing directly querying the compressed data.Compression is used to fit the data structure in main memory all the time,thus getting rid of disk accesses,and indexation is used to query the compressed data as fast as querying the uncompressed data.In this paper,we present the first data structure capable of losslessly compressing point clouds that have attributes and jointly indexing all three dimensions of space and attribute values.Our method is able to run range queries and attribute queries up to 100 times faster than previous methods. 展开更多
关键词 3d point clouds lossless compression INDEXING
原文传递
基于2D卷积神经网络的3D点云物体检测
17
作者 李晓丽 王乐 +1 位作者 杜振龙 陈东 《计算机工程与应用》 北大核心 2025年第23期297-304,共8页
激光雷达在自动驾驶和工业自动化领域已得到初步应用,获取了大量的场景、物体等点云数据,这些点云数据具有维度高、不规则的特性,已有的深度学习网络模型在处理这些数据时需用到计算代价高昂的三维卷积,其时空复杂度高且不能在线应用。... 激光雷达在自动驾驶和工业自动化领域已得到初步应用,获取了大量的场景、物体等点云数据,这些点云数据具有维度高、不规则的特性,已有的深度学习网络模型在处理这些数据时需用到计算代价高昂的三维卷积,其时空复杂度高且不能在线应用。针对传统网络模型处理点云数据的缺陷,提出一种基于2D卷积神经网络的3D点云物体识别方法,所提方法把不规则的点云数据统计规整为点云柱,用卷积、池化提取点云柱簇的特征,将三维的点云数据编码转化为二维的类图像特征数据;使用包含注意力机制的二维卷积神经网络在多个感受野提取充分表示点云的多尺度隐特征,解码网络根据位置、方向及物体种类识别点云物体。实验基于AscendAtlas 200DK边端设备,单次推理耗时291 ms,实验结果与传统点云目标检测网络进行比较,分别以14.7、13.2、3.4倍的性能提升优于Voxel-Net、F-PoitnNet以及Second网络模型;在KITTI数据集与ContFuse等14种点云目标检测算法进行精度对比,与次优算法相比,平均精度提升在2.3%以上;设计针对二维卷积以及注意力机制的消融实验,两个模块在模型大小与推理精度上分别提升50.9%和5.37%。实验结果表明,所提方法可高效、鲁棒、准确地检测3D点云数据的目标物体。 展开更多
关键词 3d点云 点云物体识别 深度学习 点云柱 类图像
在线阅读 下载PDF
迭代伪点云生成的3D目标检测 被引量:2
18
作者 孙立辉 王楚遥 《计算机应用研究》 北大核心 2025年第6期1894-1899,共6页
3D目标检测是自动驾驶环境感知的关键任务。然而,在复杂场景中因距离和遮挡问题,激光雷达往往难以获取目标的完整点云,这极大地影响了目标检测的精度。为了应对这一问题,提出迭代伪点云生成的三维目标检测方法(IG-RCNN)。首先,在三维体... 3D目标检测是自动驾驶环境感知的关键任务。然而,在复杂场景中因距离和遮挡问题,激光雷达往往难以获取目标的完整点云,这极大地影响了目标检测的精度。为了应对这一问题,提出迭代伪点云生成的三维目标检测方法(IG-RCNN)。首先,在三维体素骨干网络中构建了一种通道部分稀疏卷积模块CSPConv(channel sparse partial convolution),在减少通道冗杂的同时融合不同感受野下的语义信息,提高模型的特征融合能力。其次,采用多次迭代的方式生成高质量的伪点云信息,为建议框的细化提供有效的指导,提高模型的检测精度。在KITTI数据集上的实验结果显示,所提算法相较于典型两阶段算法PVRCNN,在困难难度下,行人类别和骑行者类别的检测精度提升幅度达3.89%和2.73%。实验结果表明,该算法在处理稀疏点云数据时表现出显著的优越性,尤其在处理行人和骑行者等小目标时,表现出更强的鲁棒性和准确性。 展开更多
关键词 自动驾驶 驾驶辅助系统 三维目标检测 伪点云生成
在线阅读 下载PDF
A centroid measurement method based on 3D scanning 被引量:1
19
作者 HE Xin LI Zhen 《Journal of Measurement Science and Instrumentation》 2025年第2期186-194,共9页
The centroid coordinate serves as a critical control parameter in motion systems,including aircraft,missiles,rockets,and drones,directly influencing their motion dynamics and control performance.Traditional methods fo... The centroid coordinate serves as a critical control parameter in motion systems,including aircraft,missiles,rockets,and drones,directly influencing their motion dynamics and control performance.Traditional methods for centroid measurement often necessitate custom equipment and specialized positioning devices,leading to high costs and limited accuracy.Here,we present a centroid measurement method that integrates 3D scanning technology,enabling accurate measurement of centroid across various types of objects without the need for specialized positioning fixtures.A theoretical framework for centroid measurement was established,which combined the principle of the multi-point weighing method with 3D scanning technology.The measurement accuracy was evaluated using a designed standard component.Experimental results demonstrate that the discrepancies between the theoretical and the measured centroid of a standard component with various materials and complex shapes in the X,Y,and Z directions are 0.003 mm,0.009 mm,and 0.105 mm,respectively,yielding a spatial deviation of 0.106 mm.Qualitative verification was conducted through experimental validation of three distinct types.They confirmed the reliability of the proposed method,which allowed for accurate centroid measurements of various products without requiring positioning fixtures.This advancement significantly broadened the applicability and scope of centroid measurement devices,offering new theoretical insights and methodologies for the measurement of complex parts and systems. 展开更多
关键词 centroid measurement mass characteristic parameter 3d scanning 3d point cloud data no specialized positioning fixtures multi-point weighing method
在线阅读 下载PDF
基于3D LiDAR感知的大田花生长势信息获取
20
作者 胡炼 刘于轩 +5 位作者 臧英 何杰 汪沛 黄俊威 黄培奎 赵润茂 《华中农业大学学报》 北大核心 2025年第4期102-112,共11页
为实现大田环境下快速准确获取作物株高、冠幅等长势信息,以花生为研究对象,采用3D LiDAR感知技术获取大田花生点云数据,经配准、去噪等处理,构建三维点云模型;基于KD-TREE的点云植株分割算法对大田花生植株点云数据进行单株分割,采用... 为实现大田环境下快速准确获取作物株高、冠幅等长势信息,以花生为研究对象,采用3D LiDAR感知技术获取大田花生点云数据,经配准、去噪等处理,构建三维点云模型;基于KD-TREE的点云植株分割算法对大田花生植株点云数据进行单株分割,采用体素网格法估计植株体积、旋转卡壳法提取株高和最大冠幅,获取花生长势信息;在花生种植试验区域分别采集3个不同时期花生植株得到点云数据,采用3D LiDAR感知技术开展花生单株分割和提取株高与最大冠幅的验证试验,考察长势信息获取精度,采用召回率与精确率对结果进行精度评价。结果显示,大田花生单株分割的召回率与精确率均可达84%以上,表明该方法应用于大田花生点云数据分割具有较好的准确性与完整性;将提取的花生株高与最大冠幅等参数与人工测量值进行对比,3个时期植株高度的平均绝对百分比误差分别为6.271%、4.368%和4.986%,最大冠幅的平均绝对百分比误差分别为7.114%、5.606%和4.541%,株高均方根误差分别为0.010、0.015和0.027 m,最大冠幅均方根误差分别为0.011、0.020和0.021 m;株高数据线性回归决定系数分别为0.888、0.951和0.842,最大冠幅数据线性回归决定系数分别为0.934、0.932和0.927,表明使用点云测量可实现花生表型参数高精度、非破坏性提取。 展开更多
关键词 大田花生 3dLiDAR 长势信息 点云分割
在线阅读 下载PDF
上一页 1 2 143 下一页 到第
使用帮助 返回顶部