Pattern making plays a key role in the aspect of fashion design and garment production, as it serves as the transformative process that turns a simple drawing into a consistent accumulation of garments. The process of...Pattern making plays a key role in the aspect of fashion design and garment production, as it serves as the transformative process that turns a simple drawing into a consistent accumulation of garments. The process of creating conventional or manual patterns requires a significant amount of time and a specialized skill set in various areas such as grading, marker planning, and fabric utilization. This study examines the potential of 3D technology and virtual fashion designing software in optimizing the efficiency and cost-effectiveness of pattern production processes. The proposed methodology is characterized by a higher level of comprehensiveness and reliability, resulting in time efficiency and providing a diverse range of design options. The user is not expected to possess comprehensive knowledge of traditional pattern creation procedures prior to engaging in the task. The software offers a range of capabilities including draping, 3D-to-2D and 2D-to-3D unfolding, fabric drivability analysis, ease allowance calculation, add-fullness manipulation, style development, grading, and virtual garment try-on. The strategy will cause a shift in the viewpoints and methodologies of business professionals when it comes to the use of 3D fashion design software. Upon recognizing the potential time, financial, and resource-saving benefits associated with the integration of 3D technology into their design development process, individuals will be motivated to select for its utilization over conventional pattern making methods. Individuals will possess the capacity to transfer their cognitive processes and engage in introspection regarding their professional endeavors and current activities through the utilization of 3D virtual pattern-making and fashion design technologies. To enhance the efficacy and ecological sustainability of designs, designers have the potential to integrate 3D technology with virtual fashion software, thereby compliant advantages for both commercial enterprises and the environment.展开更多
The research on flexible pressure sensors has drawn widespread attention in recent years,especially in the fields of health care and intelligent robots.In practical applications,the sensitivity of sensors directly aff...The research on flexible pressure sensors has drawn widespread attention in recent years,especially in the fields of health care and intelligent robots.In practical applications,the sensitivity of sensors directly affects the precision and integrity of weak pressure signals.Here,a pressure sensor with high sensitivity and a wide measurement range composed of porous fiber paper and 3D patterned electrodes is proposed.Multi-walled carbon nanotubes with excellent conductivity were evenly sprayed on the fiber paper to form the natural spatial conducting networks,while the copper-deposited polydimethylsiloxane films with micropyramids array were used as electrodes and flexible substrates.Increased conducting paths between electrodes and fibers can be obtained when high-density micro-pyramids fall into the porous structures of the fiber paper under external pressure,thereby promoting the pressure sensor to show an ultra-high sensitivity of 17.65 kPa^(-1)in the pressure range of 0–2 kPa,16 times that of the device without patterned electrodes.Besides,the sensor retains a high sensitivity of 2.06 kPa^(-1)in an ultra-wide measurement range of 150 kPa.Moreover,the sensor can detect various physiological signals,including pulse and voice,while attached to the human skin.This work provides a novel strategy to significantly improve the sensitivity and measurement range of flexible pressure sensors,as well as demonstrates attractive applications in physiological signal monitoring.展开更多
Affected by thermal perturbation due to mantle uprising, the rheological structure of the lithosphere could be modified, which could lead to different rifting patterns from shelf to slope in a passive continental marg...Affected by thermal perturbation due to mantle uprising, the rheological structure of the lithosphere could be modified, which could lead to different rifting patterns from shelf to slope in a passive continental margin. From the observed deformation style on the northern South China Sea and analogue modeling experiments, we find that the rift zone located on the shelf is characterized by half grabens or simple grabens controlled mainly by long faults with large vertical offset, supposed to be formed with normal lithosphere extension. On the slope, where the lithosphere is very hot due to mantle upweUing and heating, composite grabens composed of symmetric grabens developed. The boundary and inner faults are all short with small vertical offset. Between the zones with very hot and normal lithosphere, composite half grabens composed of half grabens or asymmetric grabens formed, whose boundary faults are long with large vertical offset, while the inner faults are relatively short. Along with the thickness decrease of the brittle upper crust due to high temperature, the deformation becomes more sensitive to the shape of a pre-existing weakness zone and shows orientation variation along strike. When there was a bend in the pre-existing weakness zone, and the basal plate was pulled by a clockwise rotating stress, the strongest deformation always occurs along the middle segment and at the transition area from the middle to the eastern segments, which contributes to a hotter lithosphere in the middle segment, where the Baiyun (白云) sag formed.展开更多
The creation of hollow out art includes a variety of materials, techniques and categories, its content mostly emphasizes the ancient philosophy performance of the alternation of virtual and real, and Yin-Yang depends ...The creation of hollow out art includes a variety of materials, techniques and categories, its content mostly emphasizes the ancient philosophy performance of the alternation of virtual and real, and Yin-Yang depends on the essence of Chinese culture deduction. If this feature is applied to product design, in addition to emphasizing functional orientation, this traditional arts integration with the new media, will give users a different visual inspire. This thesis is mainly in view of the importance of hollow out art in Chinese cultural heritage, and the 3D hollow out production craft has gradually lost. Therefore, the Delaunay triangle is constructed based on the Convex Hull interpolation algorithm, and the Voronoi Diagram feature is constructed based on the Divide and Conquer algorithm. And with Rhino modeling software as the main body, combined with the application of the parametric plug-in design program (GH), the 3D models of the parametric creative hollow pen holder and the parametric creative hollow lampshade were respectively completed. The traditional craftsmanship is integrated into the modern manufacturing process with innovative techniques, and the Chinese cultural spirit and beauty of nature are successfully connected.展开更多
Auspicious patterns are an important manifestation of traditional crafts aesthetics for Chinese culture, and it not only exhibits the clever tricks of folk art, showing more personality and characteristics of Chinese ...Auspicious patterns are an important manifestation of traditional crafts aesthetics for Chinese culture, and it not only exhibits the clever tricks of folk art, showing more personality and characteristics of Chinese culture in the humanities and arts aesthetic concerns. It shows the traditional aesthetics, based on the harmonious and success, constructed by intelligence and humbleness, shaped by symmetry and balance. This thesis contains two topics: they are the 2D image materialization and the 3D model flattening. First is analyzing the image of the auspicious pattern, and transformed the 2D image into a solid model. The second is through the mathematical operation skills of the geometric model, the existing auspicious 3D model of the triangular mesh is scaled, appropriately rotated and divided to form a flattening model of different visual effects. Finally, these models by means of other modeling software were combined into a new 3D model, then through the 3D printer to quickly print out part of the unique personalized products, to promote the natural beauty of traditional Chinese culture.展开更多
文摘Pattern making plays a key role in the aspect of fashion design and garment production, as it serves as the transformative process that turns a simple drawing into a consistent accumulation of garments. The process of creating conventional or manual patterns requires a significant amount of time and a specialized skill set in various areas such as grading, marker planning, and fabric utilization. This study examines the potential of 3D technology and virtual fashion designing software in optimizing the efficiency and cost-effectiveness of pattern production processes. The proposed methodology is characterized by a higher level of comprehensiveness and reliability, resulting in time efficiency and providing a diverse range of design options. The user is not expected to possess comprehensive knowledge of traditional pattern creation procedures prior to engaging in the task. The software offers a range of capabilities including draping, 3D-to-2D and 2D-to-3D unfolding, fabric drivability analysis, ease allowance calculation, add-fullness manipulation, style development, grading, and virtual garment try-on. The strategy will cause a shift in the viewpoints and methodologies of business professionals when it comes to the use of 3D fashion design software. Upon recognizing the potential time, financial, and resource-saving benefits associated with the integration of 3D technology into their design development process, individuals will be motivated to select for its utilization over conventional pattern making methods. Individuals will possess the capacity to transfer their cognitive processes and engage in introspection regarding their professional endeavors and current activities through the utilization of 3D virtual pattern-making and fashion design technologies. To enhance the efficacy and ecological sustainability of designs, designers have the potential to integrate 3D technology with virtual fashion software, thereby compliant advantages for both commercial enterprises and the environment.
基金supported by the National Key R&D Program of China(Grant Nos.2019YFE0120300,2019YFF0301802)National Natural Science Foundation of China(Grant Nos.52175554,62101513,51975542)+3 种基金Natural Science Foundation of Shanxi Province(Grant No.201801D121152)Shanxi“1331 Project”Key Subject Construction(Grant No.1331KSC)National Defense Fundamental Research ProjectResearch Project Supported by Shan Xi Scholarship Council of China(Grant No.2020-109)。
文摘The research on flexible pressure sensors has drawn widespread attention in recent years,especially in the fields of health care and intelligent robots.In practical applications,the sensitivity of sensors directly affects the precision and integrity of weak pressure signals.Here,a pressure sensor with high sensitivity and a wide measurement range composed of porous fiber paper and 3D patterned electrodes is proposed.Multi-walled carbon nanotubes with excellent conductivity were evenly sprayed on the fiber paper to form the natural spatial conducting networks,while the copper-deposited polydimethylsiloxane films with micropyramids array were used as electrodes and flexible substrates.Increased conducting paths between electrodes and fibers can be obtained when high-density micro-pyramids fall into the porous structures of the fiber paper under external pressure,thereby promoting the pressure sensor to show an ultra-high sensitivity of 17.65 kPa^(-1)in the pressure range of 0–2 kPa,16 times that of the device without patterned electrodes.Besides,the sensor retains a high sensitivity of 2.06 kPa^(-1)in an ultra-wide measurement range of 150 kPa.Moreover,the sensor can detect various physiological signals,including pulse and voice,while attached to the human skin.This work provides a novel strategy to significantly improve the sensitivity and measurement range of flexible pressure sensors,as well as demonstrates attractive applications in physiological signal monitoring.
基金supported by the National Basic Research Pro-gram of China (Nos. 2009CB219401, 2007CB41170405)the CAS Key Innovation Program (No. KZCX3-SW-234-1)+2 种基金the National Natural Science Foundation of China (Nos. 40876026, 40576027)the Knowledge Innovation Program of the South China Sea Institute of Oceanology, CAS (No. LYQY200704)the Open Fund of the Key Laboratory of Marine Geology and Environment, CAS
文摘Affected by thermal perturbation due to mantle uprising, the rheological structure of the lithosphere could be modified, which could lead to different rifting patterns from shelf to slope in a passive continental margin. From the observed deformation style on the northern South China Sea and analogue modeling experiments, we find that the rift zone located on the shelf is characterized by half grabens or simple grabens controlled mainly by long faults with large vertical offset, supposed to be formed with normal lithosphere extension. On the slope, where the lithosphere is very hot due to mantle upweUing and heating, composite grabens composed of symmetric grabens developed. The boundary and inner faults are all short with small vertical offset. Between the zones with very hot and normal lithosphere, composite half grabens composed of half grabens or asymmetric grabens formed, whose boundary faults are long with large vertical offset, while the inner faults are relatively short. Along with the thickness decrease of the brittle upper crust due to high temperature, the deformation becomes more sensitive to the shape of a pre-existing weakness zone and shows orientation variation along strike. When there was a bend in the pre-existing weakness zone, and the basal plate was pulled by a clockwise rotating stress, the strongest deformation always occurs along the middle segment and at the transition area from the middle to the eastern segments, which contributes to a hotter lithosphere in the middle segment, where the Baiyun (白云) sag formed.
文摘The creation of hollow out art includes a variety of materials, techniques and categories, its content mostly emphasizes the ancient philosophy performance of the alternation of virtual and real, and Yin-Yang depends on the essence of Chinese culture deduction. If this feature is applied to product design, in addition to emphasizing functional orientation, this traditional arts integration with the new media, will give users a different visual inspire. This thesis is mainly in view of the importance of hollow out art in Chinese cultural heritage, and the 3D hollow out production craft has gradually lost. Therefore, the Delaunay triangle is constructed based on the Convex Hull interpolation algorithm, and the Voronoi Diagram feature is constructed based on the Divide and Conquer algorithm. And with Rhino modeling software as the main body, combined with the application of the parametric plug-in design program (GH), the 3D models of the parametric creative hollow pen holder and the parametric creative hollow lampshade were respectively completed. The traditional craftsmanship is integrated into the modern manufacturing process with innovative techniques, and the Chinese cultural spirit and beauty of nature are successfully connected.
文摘Auspicious patterns are an important manifestation of traditional crafts aesthetics for Chinese culture, and it not only exhibits the clever tricks of folk art, showing more personality and characteristics of Chinese culture in the humanities and arts aesthetic concerns. It shows the traditional aesthetics, based on the harmonious and success, constructed by intelligence and humbleness, shaped by symmetry and balance. This thesis contains two topics: they are the 2D image materialization and the 3D model flattening. First is analyzing the image of the auspicious pattern, and transformed the 2D image into a solid model. The second is through the mathematical operation skills of the geometric model, the existing auspicious 3D model of the triangular mesh is scaled, appropriately rotated and divided to form a flattening model of different visual effects. Finally, these models by means of other modeling software were combined into a new 3D model, then through the 3D printer to quickly print out part of the unique personalized products, to promote the natural beauty of traditional Chinese culture.