期刊文献+
共找到427篇文章
< 1 2 22 >
每页显示 20 50 100
Cancer 3D Models:Essential Tools for Understanding and Overcoming Drug Resistance
1
作者 Sofija Jovanovic Stojanov Marija Grozdanic +3 位作者 Mila Ljujic Sandra Dragicevic Miodrag Dragoj Jelena Dinic 《Oncology Research》 2025年第10期2741-2785,共45页
Anticancer drug resistance remains a major challenge in cancer treatment hindering the efficacy of chemotherapy and targeted therapies.Conventional two-dimensional(2D)cell cultures cannot replicate the complexity of t... Anticancer drug resistance remains a major challenge in cancer treatment hindering the efficacy of chemotherapy and targeted therapies.Conventional two-dimensional(2D)cell cultures cannot replicate the complexity of the in vivo tumor microenvironment(TME),limiting their utility for drug resistance research.Therefore,three-dimensional(3D)tumor models have proven to be a promising alternative for investigating chemoresistance mechanisms.In this review,various cancer 3D models,including spheroids,organoids,scaffold-based models,and bioprinted models,are comprehensively evaluated with a focus on their application in drug resistance studies.We discuss the materials,properties,and advantages of each model,highlighting their ability to better mimic the TME and represent complex mechanisms of drug resistance such as epithelial-mesenchymal transition(EMT),drug efflux,and tumor-stroma interactions.Furthermore,we investigate the limitations of these models,including scalability,reproducibility and technical challenges,as well as their potential therapeutic impact on personalized medicine.Through a thorough comparison of model performance,we provide insights into the strengths and weaknesses of each approach and offer guidance for model selection based on specific research needs. 展开更多
关键词 Cancer three-dimensional(3d)models cancer drug resistance preclinical cancer models
暂未订购
A Web-Based Approach for the Efficient Management of Massive Multi-source 3D Models
2
作者 ZHAO Qiansheng TANG Ruibing +1 位作者 PENG Mingjun GUO Mingwu 《Journal of Geodesy and Geoinformation Science》 CSCD 2024年第3期24-41,共18页
Effectively managing extensive,multi-source,and multi-level real-scene 3D models for responsive retrieval scheduling and rapid visualization in the Web environment is a significant challenge in the current development... Effectively managing extensive,multi-source,and multi-level real-scene 3D models for responsive retrieval scheduling and rapid visualization in the Web environment is a significant challenge in the current development of real-scene 3D applications in China.In this paper,we address this challenge by reorganizing spatial and temporal information into a 3D geospatial grid.It introduces the Global 3D Geocoding System(G_(3)DGS),leveraging neighborhood similarity and uniqueness for efficient storage,retrieval,updating,and scheduling of these models.A combination of G_(3)DGS and non-relational databases is implemented,enhancing data storage scalability and flexibility.Additionally,a model detail management scheduling strategy(TLOD)based on G_(3)DGS and an importance factor T is designed.Compared with mainstream commercial and open-source platforms,this method significantly enhances the loadable capacity of massive multi-source real-scene 3D models in the Web environment by 33%,improves browsing efficiency by 48%,and accelerates invocation speed by 40%. 展开更多
关键词 massive multi-source real-scene 3d model non-relational database global 3d geocoding system importance factor massive model management
在线阅读 下载PDF
Influence of formation heterogeneity on foam flooding performance using 2D and 3D models:an experimental study 被引量:3
3
作者 Ling-Zhi Hu Lin Sun +2 位作者 Jin-Zhou Zhao Peng Wei Wan-Fen Pu 《Petroleum Science》 SCIE CAS CSCD 2020年第3期734-748,共15页
The formation heterogeneity is considered as one of the major factors limiting the application of foam flooding.In this paper,influences of formation properties,such as permeability,permeability distribution,interlaye... The formation heterogeneity is considered as one of the major factors limiting the application of foam flooding.In this paper,influences of formation properties,such as permeability,permeability distribution,interlayer,sedimentary rhythm and 3D heterogeneity,on the mobility control capability and oil displacement efficiency of foam flooding,were systematically investigated using 2D homogeneous and 2D/3D heterogeneous models under 120°C and salinity of 20×10~4 mg/L.The flow resistance of foam was promoted as the permeability increased,which thus resulted in a considerable oil recovery behavior.In the scenario of the vertical heterogeneous formations,it was observed that the permeability of the high-permeable layer was crucial to foam mobility control,and the positive rhythm appeared favorable to improve the foam flooding performance.The additional oil recovery increased to about 40%.The interlayer was favorable for the increases in mobility reduction factor and oil recovery of foam flooding when the low permeability ratio was involved.For the 3D heterogeneous formations,foam could efficiently adjust the areal and vertical heterogeneity through mobility control and gravity segregation,and thus enhancing the oil recovery to 11%–14%.The results derived from this work may provide some insight for the field test designs of foam flooding. 展开更多
关键词 Foam flooding Permeability ratio 2D/3d models HETEROGENEITY Enhanced oil recovery
原文传递
Numerical analysis of the failure process of soil-rock mixtures through computed tomography and PFC3D models 被引量:23
4
作者 Yang Ju Huafei Sun +2 位作者 Mingxu Xing Xiaofei Wang Jiangtao Zheng 《International Journal of Coal Science & Technology》 EI 2018年第2期126-141,共16页
Soil-rock mixture (SRM) is a unique type of geomaterial characterized by a heterogeneous composition and a complicated structure. It is intractable for the continuum-based soil and rock mechanics theories to accurat... Soil-rock mixture (SRM) is a unique type of geomaterial characterized by a heterogeneous composition and a complicated structure. It is intractable for the continuum-based soil and rock mechanics theories to accurately characterize and predict the SRM's mechanical properties. This study reports a novel numerical method incorporating microfocus computed tomography and PFC3D codes to probe the deformation and failure processes of SRM. The three-dimensional (3D) PFC models that represent the SRM's complex structures were built. By simulating the entire failure process in PFC3D, the SRM's strength, elastic modulus and crack growth were obtained. The influence of rock ratios on the SRM's strength, deformation and failure processes, as well as its internal mesoscale mechanism, were analyzed. By comparing simulation results with experimental data, it was verified that the 3D PFC models were in good agreement with SRM's real structure and the SRM's compression process, deformation and failure patterns; its intrinsic mesomechanism can be effectively analyzed based on such 3D PFC models. 展开更多
关键词 Soil-rock mixture (SRM) - PFC3d model Three-dimensional structure Microfocus computed tomography (μCT) Failure mechanism Crack growth
在线阅读 下载PDF
Survey of lightweighting methods of huge 3D models for online Web3D visualization 被引量:3
5
作者 Xiaojun LIU Jinyuan JIA Chang LIU 《Virtual Reality & Intelligent Hardware》 EI 2023年第5期395-406,共12页
Background With the rapid development of Web3D technologies, the online Web3D visualization, particularly for complex models or scenes, has been in a great demand. Owing to the major conflict between the Web3D system ... Background With the rapid development of Web3D technologies, the online Web3D visualization, particularly for complex models or scenes, has been in a great demand. Owing to the major conflict between the Web3D system load and resource consumption in the processing of these huge models, the huge 3D model lightweighting methods for online Web3D visualization are reviewed in this paper. Methods By observing the geometry redundancy introduced by man-made operations in the modeling procedure, several categories of light-weighting related work that aim at reducing the amount of data and resource consumption are elaborated for Web3D visualization. Results By comparing perspectives, the characteristics of each method are summarized, and among the reviewed methods, the geometric redundancy removal that achieves the lightweight goal by detecting and removing the repeated components is an appropriate method for current online Web3D visualization. Meanwhile, the learning algorithm, still in improvement period at present, is our expected future research topic. Conclusions Various aspects should be considered in an efficient lightweight method for online Web3D visualization, such as characteristics of original data, combination or extension of existing methods, scheduling strategy, cache man-agement, and rendering mechanism. Meanwhile, innovation methods, particularly the learning algorithm, are worth exploring. 展开更多
关键词 Huge 3d model Lightweighting WEB3d VISUALIZATION Shape descriptor
在线阅读 下载PDF
Geo-registered 3D models from crowdsourced image collections 被引量:1
6
作者 Jan-Michael FRAHM Jared HEINLY +3 位作者 Enliang ZHENG Enrique DUNN Pierre FITE-GEORGEL Marc POLLEFEYS 《Geo-Spatial Information Science》 SCIE EI 2013年第1期55-60,共6页
In this article we present our system for scalable,robust,and fast city-scale reconstruction from Internet photo collections(IPC)obtaining geo-registered dense 3D models.The major achievements of our system are the ef... In this article we present our system for scalable,robust,and fast city-scale reconstruction from Internet photo collections(IPC)obtaining geo-registered dense 3D models.The major achievements of our system are the efficient use of coarse appearance descriptors combined with strong geometric constraints to reduce the computational complexity of the image overlap search.This unique combination of recognition and geometric constraints allows our method to reduce from quadratic complexity in the number of images to almost linear complexity in the IPC size.Accordingly,our 3D-modeling framework is inherently better scalable than other state of the art methods and in fact is currently the only method to support modeling from millions of images.In addition,we propose a novel mechanism to overcome the inherent scale ambiguity of the reconstructed models by exploiting geo-tags of the Internet photo collection images and readily available StreetView panoramas for fully automatic geo-registration of the 3D model.Moreover,our system also exploits image appearance clustering to tackle the challenge of computing dense 3D models from an image collection that has significant variation in illumination between images along with a wide variety of sensors and their associated different radiometric camera parameters.Our algorithm exploits the redundancy of the data to suppress estimation noise through a novel depth map fusion.The fusion simultaneously exploits surface and free space constraints during the fusion of a large number of depth maps.Cost volume compression during the fusion achieves lower memory requirements for high-resolution models.We demonstrate our system on a variety of scenes from an Internet photo collection of Berlin containing almost three million images from which we compute dense models in less than the span of a day on a single computer. 展开更多
关键词 3d modeling structure from motion photo collection modeling
原文传递
Fragile Watermarking of 3D Models Using Genetic Algorithms
7
作者 Mukesh Motwani Rakhi Motwani Frederick Harris 《Journal of Electronic Science and Technology》 CAS 2010年第3期244-250,共7页
This paper describes a novel algorithm for fragile watermarking of 3D models. Fragile watermarking requires detection of even minute intentional changes to the 3D model along with the location of the change. This pose... This paper describes a novel algorithm for fragile watermarking of 3D models. Fragile watermarking requires detection of even minute intentional changes to the 3D model along with the location of the change. This poses a challenge since inserting random amount of watermark in all the vertices of the model would generally introduce perceptible distortion. The proposed algorithm overcomes this challenge by using genetic algorithm to modify every vertex location in the model so that there is no perceptible distortion. Various experimental results are used to justify the choice of the genetic algorithm design parameters. Experimental results also indicate that the proposed algorithm can accurately detect location of any mesh modification. 展开更多
关键词 3d mesh models fragile water- marking genetic algorithms SNR.
在线阅读 下载PDF
Auspicious Patterns and 3D Models Applied in the Creation of Personalized Products
8
作者 Hui-Chin Chang 《Journal of Computer and Communications》 2020年第12期58-71,共14页
Auspicious patterns are an important manifestation of traditional crafts aesthetics for Chinese culture, and it not only exhibits the clever tricks of folk art, showing more personality and characteristics of Chinese ... Auspicious patterns are an important manifestation of traditional crafts aesthetics for Chinese culture, and it not only exhibits the clever tricks of folk art, showing more personality and characteristics of Chinese culture in the humanities and arts aesthetic concerns. It shows the traditional aesthetics, based on the harmonious and success, constructed by intelligence and humbleness, shaped by symmetry and balance. This thesis contains two topics: they are the 2D image materialization and the 3D model flattening. First is analyzing the image of the auspicious pattern, and transformed the 2D image into a solid model. The second is through the mathematical operation skills of the geometric model, the existing auspicious 3D model of the triangular mesh is scaled, appropriately rotated and divided to form a flattening model of different visual effects. Finally, these models by means of other modeling software were combined into a new 3D model, then through the 3D printer to quickly print out part of the unique personalized products, to promote the natural beauty of traditional Chinese culture. 展开更多
关键词 Auspicious Patterns 2D Image Materialization 3d Model Flattening
在线阅读 下载PDF
Non-rigid 3D models retrieval based on hierarchical matching
9
作者 Liu Yujie Li Wei +3 位作者 Song Yang Gong Weiqing Li Zongmin Li Hua 《Computer Aided Drafting,Design and Manufacturing》 2017年第1期39-47,共9页
In 3D models retrieval, feature description and retrieval of non-rigid model face more complex problems due to the isometry transformation of itself. We introduce the hierarchical combination matching into the feature... In 3D models retrieval, feature description and retrieval of non-rigid model face more complex problems due to the isometry transformation of itself. We introduce the hierarchical combination matching into the feature comparison, and build a map between the divided regions of two models, and then achieve accurate feature matching based on patch-by-patch, which successfully introduces the spatial information into feature matching. Verified by experiment, the 3D model retrieval method proposed in this paper based on hierarchical combination matching can make sure more accurate feature matching, so as to enhance the precision of retrieval. 展开更多
关键词 non-rigid 3d model shape descriptor spatial distribution hierarchical combination matching
在线阅读 下载PDF
Building the 3D seismic fault models for the 2021 M_(S)6.4 Yunnan Yangbi earthquake:The potential role of pre-existing faults in generating unexpected moderate-strong earthquakes in southeast Xizang 被引量:1
10
作者 Xiao Sun Jinyu Zhang +4 位作者 Renqi Lu Wei Wang Peng Su Guanshen Liu Fang Xu 《Earthquake Science》 2025年第3期172-186,共15页
The three-dimensional(3D)geometry of a fault is a critical control on earthquake nucleation,dynamic rupture,stress triggering,and related seismic hazards.Therefore,a 3D model of an active fault can significantly impro... The three-dimensional(3D)geometry of a fault is a critical control on earthquake nucleation,dynamic rupture,stress triggering,and related seismic hazards.Therefore,a 3D model of an active fault can significantly improve our understanding of seismogenesis and our ability to evaluate seismic hazards.Utilising the SKUA GoCAD software,we constructed detailed seismic fault models for the 2021 M_(S)6.4 Yangbi earthquake in Yunnan,China,using two sets of relocated earthquake catalogs and focal mechanism solutions following a convenient 3D fault modeling workflow.Our analysis revealed a NW-striking main fault with a high-angle SW dip,accompanied by two branch faults.Interpretation of one dataset revealed a single NNW-striking branch fault SW of the main fault,whereas the other dataset indicated four steep NNE-striking segments with a left-echelon pattern.Additionally,a third ENE-striking short fault was identified NE of the main fault.In combination with the spatial distribution of pre-existing faults,our 3D fault models indicate that the Yangbi earthquake reactivated pre-existing NW-and NE-striking fault directions rather than the surface-exposed Weixi-Qiaohou-Weishan Fault zone.The occurrence of the Yangbi earthquake demonstrates that the reactivation of pre-existing faults away from active fault zones,through either cascade or conjugate rupture modes,can cause unexpected moderate-large earthquakes and severe disasters,necessitating attention in regions like southeast Xizang,which have complex fault systems. 展开更多
关键词 Yangbi earthquake 3d seismogenic fault model relocated earthquakes Weixi-Qiaohou-Weishan fault seismic hazard
在线阅读 下载PDF
Revolutionizing bone healing:the role of 3D models
11
作者 Rafaella De Pace Maria Rosa Iaquinta +9 位作者 Assia Benkhalqui Antonio D’Agostino Lorenzo Trevisiol Riccardo Nocini Chiara Mazziotta John Charles Rotondo Ilaria Bononi Mauro Tognon Fernanda Martini Elisa Mazzoni 《Cell Regeneration》 2025年第2期60-81,共22页
The increasing incidence of bone diseases has driven research towards Bone Tissue Engineering(BTE),an innovative discipline that uses biomaterials to develop three-dimensional(3D)scafolds capable of mimicking the natu... The increasing incidence of bone diseases has driven research towards Bone Tissue Engineering(BTE),an innovative discipline that uses biomaterials to develop three-dimensional(3D)scafolds capable of mimicking the natural environment of bone tissue.Traditional approaches relying on two-dimensional(2D)models have exhibited signifcant limitations in simulating cellular interactions and the complexity of the bone microenvironment.In response to these challenges,3D models such as organoids and cellular spheroids have emerged as efective tools for studying bone regeneration.Adult mesenchymal stem cells have proven crucial in this context,as they can diferentiate into osteoblasts and contribute to bone tissue repair.Furthermore,the integration of composite biomaterials has shown substantial potential in enhancing bone healing.Advanced technologies like microfuidics ofer additional opportunities to create controlled environments for cell culture,facilitating more detailed studies on bone regeneration.These advancements represent a fundamental step forward in the treatment of bone pathologies and the promotion of skeletal health.In this review,we report on the evolution of in vitro culture models applied to the study of bone healing/regrowth,starting from 2 to 3D cultures and microfuids.The diferent methodologies of in vitro model generation,cells and biomaterials are presented and discussed. 展开更多
关键词 Bone regeneration Cell-ECM interaction Stem cell Biomaterial 3d in vitro model Microfuidic
暂未订购
The new era of cardiovascular research:revolutionizing cardiovascular research with 3D models in a dish
12
作者 Yuan Yang Hao Yang +1 位作者 Fedir N.Kiskin Joe Z.Zhang 《Medical Review》 2024年第1期68-85,共18页
Cardiovascular research has heavily relied on studies using patient samples and animal models.However,patient studies often miss the data from the crucial early stage of cardiovascular diseases,as obtaining primary ti... Cardiovascular research has heavily relied on studies using patient samples and animal models.However,patient studies often miss the data from the crucial early stage of cardiovascular diseases,as obtaining primary tissues at this stage is impracticable.Transgenic animal models can offer some insights into disease mechanisms,although they usually do not fully recapitulate the phenotype of cardiovascular diseases and their progression.In recent years,a promising breakthrough has emerged in the form of in vitro three-dimensional(3D)cardiovascular models utilizing human pluripotent stem cells.These innovative models recreate the intricate 3D structure of the human heart and vessels within a controlled environment.This advancement is pivotal as it addresses the existing gaps in cardiovascular research,allowing scientists to study different stages of cardiovascular diseases and specific drug responses using human-origin models.In this review,we first outline various approaches employed to generate these models.We then comprehensively discuss their applications in studying cardiovascular diseases by providing insights into molecular and cellular changes associated with cardiovascular conditions.Moreover,we highlight the potential of these 3D models serving as a platform for drug testing to assess drug efficacy and safety.Despite their immense potential,challenges persist,particularly in maintaining the complex structure of 3D heart and vessel models and ensuring their function is comparable to real organs.However,overcoming these challenges could revolutionize cardiovascular research.It has the potential to offer comprehensive mechanistic insights into human-specific disease processes,ultimately expediting the development of personalized therapies. 展开更多
关键词 pluripotent stem cells three-dimensional(3d)models cardiac microtissues cardiac organoids vessel organoids organ-on-a-chip
原文传递
Mesh representation matters:investigating the influence of different mesh features on perceptual and spatial fidelity of deep 3D morphable models
13
作者 Robert KOSK Richard SOUTHERN +3 位作者 Lihua YOU Shaojun BIAN Willem KOKKE Greg MAGUIRE 《虚拟现实与智能硬件(中英文)》 EI 2024年第5期383-395,共13页
Background Deep 3D morphable models(deep 3DMMs)play an essential role in computer vision.They are used in facial synthesis,compression,reconstruction and animation,avatar creation,virtual try-on,facial recognition sys... Background Deep 3D morphable models(deep 3DMMs)play an essential role in computer vision.They are used in facial synthesis,compression,reconstruction and animation,avatar creation,virtual try-on,facial recognition systems and medical imaging.These applications require high spatial and perceptual quality of synthesised meshes.Despite their significance,these models have not been compared with different mesh representations and evaluated jointly with point-wise distance and perceptual metrics.Methods We compare the influence of different mesh representation features to various deep 3DMMs on spatial and perceptual fidelity of the reconstructed meshes.This paper proves the hypothesis that building deep 3DMMs from meshes represented with global representations leads to lower spatial reconstruction error measured with L_(1) and L_(2) norm metrics and underperforms on perceptual metrics.In contrast,using differential mesh representations which describe differential surface properties yields lower perceptual FMPD and DAME and higher spatial fidelity error.The influence of mesh feature normalisation and standardisation is also compared and analysed from perceptual and spatial fidelity perspectives.Results The results presented in this paper provide guidance in selecting mesh representations to build deep 3DMMs accordingly to spatial and perceptual quality objectives and propose combinations of mesh representations and deep 3DMMs which improve either perceptual or spatial fidelity of existing methods. 展开更多
关键词 Shape modelling Deep 3d morphable models Representation learning Feature engineering Perceptual metrics
在线阅读 下载PDF
Advancing Environmental Toxicology In Vitro:From Immortalized Cancer Cell Lines to 3D Models Derived from Stem Cells
14
作者 Hanyue Li Nuoya Yin +1 位作者 Renjun Yang Francesco Faiola 《Environment & Health》 2024年第6期332-349,共18页
In recent years,rapid industrial development has resulted in the production and exposure of a substantial number of compounds to the human body.This has created an urgent need in environmental toxicology for models th... In recent years,rapid industrial development has resulted in the production and exposure of a substantial number of compounds to the human body.This has created an urgent need in environmental toxicology for models that are efficient,accurate,and cost-effective in evaluating the health impacts of these compounds on humans.Over the past seven decades,various cancer cell lines and immortalized cell lines have made significant contributions to the advancement of research on organ toxicity.Pluripotent stem cell technology,especially toxicological models derived from pluripotent stem cells,presents modern environmental toxicologists with high-throughput,species-relevant,and predictive options.In this comprehensive review,we assess the characteristics of representative human cancer cell lines and immortalized cell lines in environmental toxicology,as well as introduce two distinct human pluripotent stem cell types and their innovative toxicological models.We explore their applications and prospects in the field of environmental toxicology,while also addressing the readiness of in vitro models to confront the emerging challenges of the future. 展开更多
关键词 Environmental toxicology Pluripotent stem cells Cancer cell lines Immortalized cell lines 3d cell-based models
暂未订购
3D geometallurgical characterization of coal mine waste rock piles for their reprocessing purpose
15
作者 Ayoub El Aallaoui Abdellatif Elghali +3 位作者 Rachid Hakkou Yassine Taha Mostafa Benzaazoua Mustapha El Ghorfi 《International Journal of Coal Science & Technology》 2025年第1期279-302,共24页
Jerada coal mining generates extensive coal mine waste rock(CMWR)piles rich in valuable minerals,posing environmental challenges and economic opportunities.This study examines reprocessing feasibility through 3D geome... Jerada coal mining generates extensive coal mine waste rock(CMWR)piles rich in valuable minerals,posing environmental challenges and economic opportunities.This study examines reprocessing feasibility through 3D geometallurgical characterization.Sampling used down the hole hammer drilling technique(DTH)and drone surveys for topographical precision.Over 620 samples from(T01,T02,T08)underwent comprehensive analyses including particle size distribution,x-ray fluorescence(XRF),total sulfur/carbon analysis(S/C),and inductively coupled plasma mass spectrometry(ICP-MS)for physical-chemical characterization.Mineralogical aspects were explored via optical microscopy(OM),X-ray diffraction(XRD),scanning electron microscopy(SEM),electron probe microanalysis(EPMA),and laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS).Quantitative mineral evaluation by scanning electron microscope(QEMSCAN)provided mineral insights.Chemical data was used in a 3D block model to quantify residual coal.Results for the three examined CMWR piles(T01,T02,and T08)showed varying D80 from 160 to 300μm,notable carbon content averaged 12.5 wt%(T01),16 wt%(T02),and 8.5 wt%(T08).Sulfur presence exceeded 1 wt%in T08,and potential environmental concerns due to iron sulfides.Anthracite liberation was below 30 wt%.3D modeling estimated a total volume of 7 Mm3,mainly from T08,equaling 11.2 Mt.With its high carbon content and substantial tonnages,re-exploitation or alternative applications could minimize these CMWR piles environmental impact. 展开更多
关键词 Waste rock Coal mine waste rock GEOCHEMISTRY 3d Modeling Geometallurgy Jerada mine
在线阅读 下载PDF
Vector Extraction from Design Drawings for Intelligent 3D Modeling of Transmission Towers
16
作者 Ziqiang Tang Chao Han +5 位作者 Hongwu Li Zhou Fan Ke Sun Yuntian Huang Yuhang Chen Chenxing Wang 《Computers, Materials & Continua》 2025年第2期2813-2829,共17页
Accurate vector extraction from design drawings is required first to automatically create 3D models from pixel-level engineering design drawings. However, this task faces the challenges of complicated design shapes as... Accurate vector extraction from design drawings is required first to automatically create 3D models from pixel-level engineering design drawings. However, this task faces the challenges of complicated design shapes as well as cumbersome and cluttered annotations on drawings, which interfere with the vector extraction heavily. In this article, the transmission tower containing the most complex structure is taken as the research object, and a semantic segmentation network is constructed to first segment the shape masks from the pixel-level drawings. Preprocessing and postprocessing are also proposed to ensure the stability and accuracy of the shape mask segmentation. Then, based on the obtained shape masks, a vector extraction network guided by heatmaps is designed to extract structural vectors by fusing the features from node heatmap and skeleton heatmap, respectively. Compared with the state-of-the-art methods, experiment results illustrate that the proposed semantic segmentation method can effectively eliminate the interference of many elements on drawings to segment the shape masks effectively, meanwhile, the model trained by the proposed vector extraction network can accurately extract the vectors such as nodes and line connections, avoiding redundant vector detection. The proposed method lays a solid foundation for automatic 3D model reconstruction and contributes to technological advancements in relevant fields. 展开更多
关键词 Design drawings semantic segmentation deep learning vector extraction DIGITIZATION 3d modeling
在线阅读 下载PDF
Insights into the 3D thermal structure of interplate earthquakes in the Colombia–Ecuador subduction zone
17
作者 Rui Qu YingFeng Ji +2 位作者 WeiLing Zhu Ye Zhu Haris Faheem 《Earth and Planetary Physics》 2025年第2期279-288,共10页
Throughout the 20th century, several large megathrust earthquakes were observed in the Colombia–Ecuador subduction zone which widely ruptured plate interfaces, causing considerable damage and loss of life. The occurr... Throughout the 20th century, several large megathrust earthquakes were observed in the Colombia–Ecuador subduction zone which widely ruptured plate interfaces, causing considerable damage and loss of life. The occurrence of earthquakes in subduction zones is thought to be closely related to the thermal structure of the incoming plate. However, in the case of the subducting Nazca Plate beneath the Colombia–Ecuador zone, the thermal structure remains unclear, especially its hydraulic distribution. On the basis of 3D thermal models, we present new insights into the plate interface conditions of Colombia–Ecuador interplate and megathrust earthquakes. We show that the plate geometry strongly affects the along-strike thermal structure of the slab beneath Colombia and Ecuador, with the subduction of the Carnegie Ridge playing an important role. Our results further reveal that the unique geometry of the Nazca Plate is the primary reason for the relatively high temperatures of the slab beneath Colombia. We suggest that the positions of the100–200 ℃ and 350–450 ℃ isotherms on the plate interface determine the updip and downdip limits of the seismogenic zone. For Colombia–Ecuador interplate earthquakes, the released fluids control the distribution of shallow-depth earthquakes, whereas the age and geometry of the slab control the distribution of intermediate-depth earthquakes. The average temperature of the plate interface at the upper limit of large megathrust earthquakes is hotter than previously thought, which is more consistent with our understanding of the Colombia–Ecuador subduction zone. We predict that the potential location of future large seismic events could be in the rupture zone of past seismic events or offshore of northern Colombia. 展开更多
关键词 thermal structure interplate earthquakes plate geometry Colombia-Ecuador 3d modeling
在线阅读 下载PDF
3D Exact Magneto-Electro-Elastic Static Analysis of Multilayered Plates
18
作者 Salvatore Brischetto Domenico Cesare Tommaso Mondino 《Computer Modeling in Engineering & Sciences》 2025年第7期643-668,共26页
This study proposes a three-dimensional(3D)coupled magneto-electro-elastic problem for the static analysis of multilayered plates embedding piezomagnetic and piezoelectric layers by considering both sensor and actuato... This study proposes a three-dimensional(3D)coupled magneto-electro-elastic problem for the static analysis of multilayered plates embedding piezomagnetic and piezoelectric layers by considering both sensor and actuator configurations.The 3D governing equations for the magneto-electro-elastic static behavior of plates are explicitly show that are made by the three 3D equilibrium equations,the 3D divergence equation for magnetic induction,and the 3D divergence equation for the electric displacement.The proposed solution involves the exponential matrix in the thickness direction and primary variables’harmonic forms in the in-plane ones.A closed-form solution is performed considering simply-supported boundary conditions.Interlaminar continuity conditions are imposed for displacements,magnetic potential,electric potential,transverse shear/normal stresses,transverse normal magnetic induction and transverse normal electric displacement.Therefore,a layerwise approach is adopted.The results section is composed of an assessment part,where the present model is compared to past 3D electro-elastic or magneto-elastic formulations and a new benchmark part.Benchmarks consider sensor and actuator plate configurations for the fully coupled magneto-electro-elastic cases for different thickness ratios.Tabular and graphical results are presented for displacements,stresses,magnetic potential,electric potential,transverse normal magnetic induction and transverse normal electric displacement.For each presented benchmark,magneto-electro-elastic coupling and thickness and material layer effects are discussed in depth. 展开更多
关键词 Multilayered and smart plates static analyses magneto-electro-elastic coupling exponential matrix method 3d model layer-wise approach
在线阅读 下载PDF
Non-Neural 3D Nasal Reconstruction:A Sparse Landmark Algorithmic Approach for Medical Applications
19
作者 Nguyen Khac Toan Ho Nguyen Anh Tuan Nguyen Truong Thinh 《Computer Modeling in Engineering & Sciences》 2025年第5期1273-1295,共23页
This paper presents a novel method for reconstructing a highly accurate 3D nose model of the human from 2D images and pre-marked landmarks based on algorithmic methods.The study focuses on the reconstruction of a 3D n... This paper presents a novel method for reconstructing a highly accurate 3D nose model of the human from 2D images and pre-marked landmarks based on algorithmic methods.The study focuses on the reconstruction of a 3D nose model tailored for applications in healthcare and cosmetic surgery.The approach leverages advanced image processing techniques,3D Morphable Models(3DMM),and deformation techniques to overcome the limita-tions of deep learning models,particularly addressing the interpretability issues commonly encountered in medical applications.The proposed method estimates the 3D coordinates of landmark points using a 3D structure estimation algorithm.Sub-landmarks are extracted through image processing techniques and interpolation.The initial surface is generated using a 3DMM,though its accuracy remains limited.To enhance precision,deformation techniques are applied,utilizing the coordinates of 76 identified landmarks and sub-landmarks.The resulting 3D nose model is constructed based on algorithmic methods and pre-marked landmarks.Evaluation of the 3D model is conducted by comparing landmark distances and shape similarity with expert-determined ground truth on 30 Vietnamese volunteers aged 18 to 47,all of whom were either preparing for or required nasal surgery.Experimental results demonstrate a strong agreement between the reconstructed 3D model and the ground truth.The method achieved a mean landmark distance error of 0.631 mm and a shape error of 1.738 mm,demonstrating its potential for medical applications. 展开更多
关键词 Nose reconstruction 3d reconstruction medical applications algorithmic reconstruction enhanced 3d model
在线阅读 下载PDF
3D Computational Modeling and Stability Analysis of Highway Slope:A Case Study from the X104 Section in Ganxian County
20
作者 Fujie Dai Yiwen Jin +1 位作者 Yongliang Wang Jiajun Li 《Journal of Electronic Research and Application》 2025年第2期65-68,共4页
Highway planning requires geological surveys and stability analysis of the surrounding area.In the early stage of the survey,the modeling and stability analysis of the survey area can be carried out by using GIS softw... Highway planning requires geological surveys and stability analysis of the surrounding area.In the early stage of the survey,the modeling and stability analysis of the survey area can be carried out by using GIS software to intuitively understand the topography of the study area.The use of DEM to extract terrain factors can be used for simple stability analysis and the source data is easy to obtain,simple to operate,fast to analyze,and reliable analysis results.In this paper,taking the X104 road section in Ganxian County as an example,the ArcGIS platform is used to carry out 3D modeling visualization and stability analysis,and the stability evaluation map of the study area is obtained. 展开更多
关键词 3d modeling STABILITY GIS Highway planning
在线阅读 下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部