A three-dimensional numerical model of sand wave dynamics,incorporating the interaction of currents and waves at various angles,has been developed using the Regional Ocean Modeling System(ROMS).This model accounts for...A three-dimensional numerical model of sand wave dynamics,incorporating the interaction of currents and waves at various angles,has been developed using the Regional Ocean Modeling System(ROMS).This model accounts for both bedload and suspended load sediment transport under combined waves and current conditions.The investigation examines the influence of several key parameters,including the rotation angle of sand waves relative to the main current,tidal current velocity amplitude,residual current,water depth,wave height,wave period,and wave direction,on sand wave evolution.The growth rate and migration rate of sand waves decrease as their rotation angle increases.For rotation angles smaller than 15°,sand wave evolution can be effectively simulated by a vertical 2D model with an error within 10%.The numerical results demonstrate that variations in tidal current velocity amplitude or residual current affect both vertical growth and horizontal migration of sand waves.As tidal current velocity amplitude and residual current increase,the growth rate initially rises to a maximum before decreasing.The migration rate shows a consistent increase with increasing tidal current amplitude and residual current.Under combined waves and current,both growth and migration rates decrease as water depth increases.With increasing wave height and period,the growth rate and migration rate initially rise to maximum values before declining,while showing a consistent increase with wave height and period.The change rate of sand waves reaches its maximum when wave propagation aligns parallel to tidal currents,and reaches its minimum when wave propagation is perpendicular to the currents.This phenomenon can be explained by the fluctuation of total bed shear stress relative to the angle of interaction between waves and current.展开更多
Rock discontinuities control rock mechanical behaviors and significantly influence the stability of rock masses.However,existing discontinuity mapping algorithms are susceptible to noise,and the calculation results ca...Rock discontinuities control rock mechanical behaviors and significantly influence the stability of rock masses.However,existing discontinuity mapping algorithms are susceptible to noise,and the calculation results cannot be fed back to users timely.To address this issue,we proposed a human-machine interaction(HMI)method for discontinuity mapping.Users can help the algorithm identify the noise and make real-time result judgments and parameter adjustments.For this,a regular cube was selected to illustrate the workflows:(1)point cloud was acquired using remote sensing;(2)the HMI method was employed to select reference points and angle thresholds to detect group discontinuity;(3)individual discontinuities were extracted from the group discontinuity using a density-based cluster algorithm;and(4)the orientation of each discontinuity was measured based on a plane fitting algorithm.The method was applied to a well-studied highway road cut and a complex natural slope.The consistency of the computational results with field measurements demonstrates its good accuracy,and the average error in the dip direction and dip angle for both cases was less than 3.Finally,the computational time of the proposed method was compared with two other popular algorithms,and the reduction in computational time by tens of times proves its high computational efficiency.This method provides geologists and geological engineers with a new idea to map rapidly and accurately rock structures under large amounts of noises or unclear features.展开更多
The interaction between pile and soft soil of the passive pile group subjected to soil movement was analyzed with three-dimensional finite element model by using ANSYS software. The soil was assumed to be elastic-plas...The interaction between pile and soft soil of the passive pile group subjected to soil movement was analyzed with three-dimensional finite element model by using ANSYS software. The soil was assumed to be elastic-plastic complying with the Drucker-Prager yield criterion in the analysis. The large displacement of soil was considered and contact elements were used to evaluate the interaction between pile and soil. The influences of soil depth of layer and number of piles on the lateral pressure of the pile were investigated, and the lateral pressure distributions on the (2×1) pile group and on the (2×2) pile group were compared. The results show that the adjacent surcharge may result in significant lateral movement of the soft soil and considerable pressure on the pile. The pressure acting on the row near the surcharge is higher than that on the other row, due to the "barrier" and arching effects in pile groups. The passive load and its distribution should be taken into account in the design of the passive piles.展开更多
Magnetic interaction between magnetic particles is of great significance in the fields of magnetic separation and functional materials.A good understanding of interaction mechanism of magnetic particles would further ...Magnetic interaction between magnetic particles is of great significance in the fields of magnetic separation and functional materials.A good understanding of interaction mechanism of magnetic particles would further boost its promising industrial applications.We hereby present our work which visualizes the movement behavior of magnetic spheres in magnetic fields employing high-speed imaging and simulates the dynamic behavior of spheres using an Arbitrary Lagrangian-Eulerian(ALE)based on finite element method.In this paper,we investigated the stress tensor,magnetic force,and dynamic behavior of magnetic spheres in magnetic fields,especially magnetic energy density in different domains.Results show that there are four relatively independent regions of magnetic energy density distribution in external spatial domains of a single sphere system.Attractive force will generate when the energy density in the spatial region between two spheres is relatively high,while a repulsive force will generate when the energy density in the spatial region between two spheres is relatively low.Every magnetic sphere spontaneously moves towards the region with high energy density and stays away from the region with low energy density.The total magnetic energy in magnetic spheres’domains(V_(1))and external spatial domains(V_(2))increases,but the magnetic energy in the external spatial domain decreases over time during the aggregation process.The magnetic spheres ultimately arrange in chain-like structures oriented along magnetic field direction.We hereby proposed a novel and efficient approach to predict the movement trends and final state of magnetic particle swarm from the view of energy density.展开更多
In this paper, a 3D time domain technique is adopted to calculate the coupled hydrodynamic interaction between two bodies without flare in waves. For verifying the code, two same cylinders are selected to calculate co...In this paper, a 3D time domain technique is adopted to calculate the coupled hydrodynamic interaction between two bodies without flare in waves. For verifying the code, two same cylinders are selected to calculate coupled hydrodynamic effects by comparison with the results obtained by 3D frequency method which has been proved to be efficient for solving such problems. In order to improve efficiency of calculation, the effect of history time has been discussed, and an improved method is presented. Moreover, the effect of lateral separation distance is also discussed in detail. The technique developed here may serve as a more rigorous tool to analyze the related transient problems of two ships doing underway replenishment in waves.展开更多
The fabrication of multi-material medical phantoms with both patient-specificity and realistic mechanical properties is of great importance for the development of surgical planning and medical training.In this work,a ...The fabrication of multi-material medical phantoms with both patient-specificity and realistic mechanical properties is of great importance for the development of surgical planning and medical training.In this work,a 3D multi-material printing system for medical phantom manufacturing was developed.Rigid and elastomeric materials are firstly combined in such application for an accurate tactile feedback.The phantom is designed with multiple layers,where silicone ink,Thermoplastic Polyurethane(TPU),and Acrylonitrile Butadiene Styrene(ABS)were chosen as printing materials for skin,soft tissue,and bone,respectively.Then,the printed phantoms were utilized for the investigation of needle-phantom interaction by needle insertion experiments.The mechanical needle-phantom interaction was characterized by skin-soft tissue interfacial puncture force,puncture depth,and number of insertion force peaks.The experiments demonstrated that the manufacturing conditions,i.e.the silicone grease ratio,interfacial thickness and the infill rate,played effective roles in regulating mechanical needle-phantom interaction.Moreover,the influences of material properties,including interfacial thickness and ultimate stress,on needle-phantom interaction were studied by finite element simulation.Also,a patient-specific forearm phantom was printed,where the anatomical features were acquired from Computed Tomography(CT)data.This study provided a potential manufacturing method for multi-material medical phantoms with tunable mechanical properties and offered guidelines for better phantom design.展开更多
In this paper,2D asynchronous spectra generated by using the DAOSD approach was utilized to probe interactions between Nd^3+ and pyridinium dissolved in aqueous solution.A series of cross peaks in the resultant 2D as...In this paper,2D asynchronous spectra generated by using the DAOSD approach was utilized to probe interactions between Nd^3+ and pyridinium dissolved in aqueous solution.A series of cross peaks in the resultant 2D asynchronous spectrum confirms the occurrence of intermolecular interaction between Nd^3+and pyridinium.However,no coordination occurs between Nd^3+ and pyridinium.Interaction between πelectron from aromatic system and/electron from lanthanide ions account for the appearance of cross peaks in 2D asynchronous spectra.Because of the interaction,the emission spectrum of pyridinium exhibits a significant change when neodymium perchlorate was introduced into the system.展开更多
The East African Rift system (EARS) provides a unique system with the juxtaposition of two contrasting yet simultaneously formed rift branches, the eastern, magma-rich, and the western, magma-poor, on either sides o...The East African Rift system (EARS) provides a unique system with the juxtaposition of two contrasting yet simultaneously formed rift branches, the eastern, magma-rich, and the western, magma-poor, on either sides of the old thick Tanzanian craton embedded in a younger lithosphere. Data on the pre-rifr, syn-rift and post-rift far-field volcanic and tectonic activity show that the EARS formed in the context of the interaction between a deep mantle plume and a horizontally and vertically heterogeneous lithosphere under far-field tectonic extension. We bring quantitative insights into this evolution by implementing high-resolution 3D thermo-mechanical numerical deformation models of a lithosphere of realistic rheology. The models focus on the central part of the EARS. We explore scenarios of plumelithosphere interaction with plumes of various size and initial position rising beneath a tectonically pre-stretched lithosphere. We test the impact of the inherited rheological discontinuities (suture zones) along the craton borders, of the rheological structure, of lithosphere plate thickness variations, and of physical and mechanical contrasts between the craton and the embedding lithosphere. Our experiments indicate that the ascending plume material is deflected by the cratonic keel and preferentially channeled along one of its sides, leading to the formation of a large rift zone along the eastern side of the craton, with significant magmatic activity and substantial melt amount derived from the mantle plume material. We show that the observed asymmetry of the central EARS, with coeval amagmatic (western) and magmatic (eastern) branches, can be explained by the splitting of warm material rising from a broad plume head whose initial position is slightly shifted to the eastern side of the craton. In that case, neither a mechanical weakness of the contact between the craton and the embedding lithosphere nor the presence of second plume are required to produce simulations that match observations. This result reconciles the passive and active rift models and demonstrates the possibility of development of both magmatic and amagmatic rifts in identical geotectonic environments.展开更多
We present a method of 3D image mosaicing for real 3D representation of roadside buildings, and implement a Web-based interactive visualization environment for the 3D video mosaics created by 3D image mosaicing. The 3...We present a method of 3D image mosaicing for real 3D representation of roadside buildings, and implement a Web-based interactive visualization environment for the 3D video mosaics created by 3D image mosaicing. The 3D image mo- saicing technique developed in our previous work is a very powerful method for creating textured 3D-GIS data without excessive data processing like the laser or stereo system. For the Web-based open access to the 3D video mosaics, we build an interactive visualization environment using X3D, the emerging standard of Web 3D. We conduct the data preprocessing for 3D video mosaics and the X3D modeling for textured 3D data. The data preprocessing includes the conversion of each frame of 3D video mosaics into concatenated image files that can be hyperlinked on the Web. The X3D modeling handles the representation of concatenated images using necessary X3D nodes. By employing X3D as the data format for 3D image mosaics, the real 3D representation of roadside buildings is extended to the Web and mobile service systems.展开更多
The properties of Mach stems in hypersonic corner flow induced by Mach interaction over 3D intersecting wedges were studied theoretically and numerically.A new method called "spatial dimension reduction" was used to...The properties of Mach stems in hypersonic corner flow induced by Mach interaction over 3D intersecting wedges were studied theoretically and numerically.A new method called "spatial dimension reduction" was used to analyze theoretically the location and Mach number behind Mach stems. By using this approach, the problem of 3D steady shock/shock interaction over 3D intersecting wedges was transformed into a 2D moving one on cross sections, which can be solved by shock-polar theory and shock dynamics theory. The properties of Mach interaction over 3D intersecting wedges can be analyzed with the new method,including pressure, temperature, density in the vicinity of triple points, location, and Mach number behind Mach stems.Theoretical results were compared with numerical results,and good agreement was obtained. Also, the influence of Mach number and wedge angle on the properties of a 3D Mach stem was studied.展开更多
Nowadays,there are many studies conducted in the field of marine hydrodynamics which focus on two vessels traveling and floating in sufficiently close proximity to experience significant interactions.The hydrodynamic ...Nowadays,there are many studies conducted in the field of marine hydrodynamics which focus on two vessels traveling and floating in sufficiently close proximity to experience significant interactions.The hydrodynamic behavior of parallel moving ships in waves is an interesting and important topic of late.A numerical investigation has been carried out for the prediction of wave exciting forces and motion responses of parallel moving ships in regular waves.The numerical solution was based on 3D distribution technique and using the linear wave theory to determine the exciting forces and ship's motion.The speed effects have been considered in the Green function for more realistic results.The numerical computations of wave exciting forces and motion responses were carried out for a Mariner and Series 60 for the purpose of discovering different Froude numbers and different separation distances in head sea conditions.Based on the numerical computations,it was revealed that the sway,roll and yaw have a significant effect due to hydrodynamic interaction.展开更多
Three-dimensional(3D)bio-printing is an emerging tissue engineering technology,and its printing parameters have been upgraded to enable in-depth application in cell-cultured meat.However,excellent printable and edible...Three-dimensional(3D)bio-printing is an emerging tissue engineering technology,and its printing parameters have been upgraded to enable in-depth application in cell-cultured meat.However,excellent printable and edible bio-inks for cell-cultured meat are in urgent need of development.Therefore,a low-cost bio-ink based on albumin and gelatin was developed.At first,suitable printability of the bio-ink was determined by rheology analysis,excellent mechanical stability,and excellent mechanical stability of the printed scaffold was also proved by water absorption and degradation rate.Next,the biocompatibility of the scaffold and its interaction with cells were clarified through cell proliferation culture,cell status research and omics analysis.Notably,AG7 demonstrated better printability and AGS7 provided better conditions for cell attachment,proliferation and migration,S-shaped exponential growth curve further revealed the significant advantages of AGS7 scaffolds in cell culture.More importantly,the tissue culture process of muscle cells was simulated to organoid culture,which elucidated the interaction information between cells and scaffolds.This work has filled the vacancy in the industry and provides a novel strategy for the development of production of cell cultured meat.展开更多
In this paper, by using the Lagrangian coordinates, the strongly oblique interactions between solitary waves with the same mode in a stratified fluid ape discussed, which includes the shallow fluid case and deep fluid...In this paper, by using the Lagrangian coordinates, the strongly oblique interactions between solitary waves with the same mode in a stratified fluid ape discussed, which includes the shallow fluid case and deep fluid case. It is found that the interactions are described by the KP equation for the shallow fluid case, the two-dimensional intermediate long wave equation (2D-ILW equation) for the deep fluid case and the two-dimensional BO equation (2D-BO equation) for the infinite deep fluid case.展开更多
Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.Howev...Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.However,the hydrological response of vegetated slopes,especially three-dimensional(3D)slopes covered with shrubs,under different rainfall patterns remains unclear and requires further investigation.To address this issue,this study adopts a novel 3D numerical model for simulating hydraulic interactions between the root system of the shrub and the surrounding soil.Three series of numerical parametric studies are conducted to investigate the influences of slope inclination,rainfall pattern and rainfall duration.Four rainfall patterns(advanced,bimodal,delayed,and uniform)and two rainfall durations(4-h intense and 168-h mild rainfall)are considered to study the hydrological response of the slope.The computed results show that 17%higher transpiration-induced suction is found for a steeper slope,which remains even after a short,intense rainfall with a 100-year return period.The extreme rainfalls with advanced(PA),bimodal(PB)and uniform(PU)rainfall patterns need to be considered for the short rainfall duration(4 h),while the delayed(PD)and uniform(PU)rainfall patterns are highly recommended for long rainfall durations(168 h).The presence of plants can improve slope stability markedly under extreme rainfall with a short duration(4 h).For the long duration(168 h),the benefit of the plant in preserving pore-water pressure(PWP)and slope stability may not be sufficient.展开更多
In this article I will address the issue of the meaning of Embodied Artificial Intelligence(EAI)as it is configured today.My starting point is the refined interactive perspective on the semantics of EAI,as was recentl...In this article I will address the issue of the meaning of Embodied Artificial Intelligence(EAI)as it is configured today.My starting point is the refined interactive perspective on the semantics of EAI,as was recently suggested by Froese and colleagues.This perspective rests on the assumption that the concept of human bodily subjectivity must be extended to include meaning-making processes,which are enabled by advanced AI systems that may be incorporated in the human biological body.After having clarified the technical background,I will introduce the genetic component of the phenomenological method as a suitable tool to face the aforementioned issue.Towards this end,I will place the genetic method in the context of the so-called New Human-Machine Interaction(New HMI).I will further outline a genetic phenomenology of visual embodiment,suggesting a futuristic application based on the thesis of the“technological supplementation of phenomenological methodology”through the synthetic method.The case at stake is that of patients with a severe clinical picture characterised by the loss of corneal function,who in the near future could be treated with synthetic corneal prosthetic implants produced by a 3D bio-printing process by using an advanced EAI technique.I will conclude this article with a brief review of the main problems that still remain open.展开更多
In view of the limitations of the mathematical method used in the container terminal logistics system, this paper uses Unity3D to establish a computer simulation model for the container automated yard, which dynamical...In view of the limitations of the mathematical method used in the container terminal logistics system, this paper uses Unity3D to establish a computer simulation model for the container automated yard, which dynamically displays the operation process of the container automated yard logistics system in real time. Through the plane four-parameter coordinate conversion method and by taking the Shanghai urban construction coordinate system as the medium, it completes the conversion from the satellite positioning reference ellipsoid coordinates to the three-dimensional virtual scene coordinates. The example results show that the method is reliable and practical, improves the accuracy and efficiency of positioning, and provides a reliable reference basis for the container terminal logistics system.展开更多
基金the National Natural Science Foundation of China(Grant Nos.52371289 and 51979192).
文摘A three-dimensional numerical model of sand wave dynamics,incorporating the interaction of currents and waves at various angles,has been developed using the Regional Ocean Modeling System(ROMS).This model accounts for both bedload and suspended load sediment transport under combined waves and current conditions.The investigation examines the influence of several key parameters,including the rotation angle of sand waves relative to the main current,tidal current velocity amplitude,residual current,water depth,wave height,wave period,and wave direction,on sand wave evolution.The growth rate and migration rate of sand waves decrease as their rotation angle increases.For rotation angles smaller than 15°,sand wave evolution can be effectively simulated by a vertical 2D model with an error within 10%.The numerical results demonstrate that variations in tidal current velocity amplitude or residual current affect both vertical growth and horizontal migration of sand waves.As tidal current velocity amplitude and residual current increase,the growth rate initially rises to a maximum before decreasing.The migration rate shows a consistent increase with increasing tidal current amplitude and residual current.Under combined waves and current,both growth and migration rates decrease as water depth increases.With increasing wave height and period,the growth rate and migration rate initially rise to maximum values before declining,while showing a consistent increase with wave height and period.The change rate of sand waves reaches its maximum when wave propagation aligns parallel to tidal currents,and reaches its minimum when wave propagation is perpendicular to the currents.This phenomenon can be explained by the fluctuation of total bed shear stress relative to the angle of interaction between waves and current.
基金supported by the National Key R&D Program of China(No.2023YFC3081200)the National Natural Science Foundation of China(No.42077264)the Scientific Research Project of PowerChina Huadong Engineering Corporation Limited(HDEC-2022-0301).
文摘Rock discontinuities control rock mechanical behaviors and significantly influence the stability of rock masses.However,existing discontinuity mapping algorithms are susceptible to noise,and the calculation results cannot be fed back to users timely.To address this issue,we proposed a human-machine interaction(HMI)method for discontinuity mapping.Users can help the algorithm identify the noise and make real-time result judgments and parameter adjustments.For this,a regular cube was selected to illustrate the workflows:(1)point cloud was acquired using remote sensing;(2)the HMI method was employed to select reference points and angle thresholds to detect group discontinuity;(3)individual discontinuities were extracted from the group discontinuity using a density-based cluster algorithm;and(4)the orientation of each discontinuity was measured based on a plane fitting algorithm.The method was applied to a well-studied highway road cut and a complex natural slope.The consistency of the computational results with field measurements demonstrates its good accuracy,and the average error in the dip direction and dip angle for both cases was less than 3.Finally,the computational time of the proposed method was compared with two other popular algorithms,and the reduction in computational time by tens of times proves its high computational efficiency.This method provides geologists and geological engineers with a new idea to map rapidly and accurately rock structures under large amounts of noises or unclear features.
基金Project(50378036) supported by the National Natural Science Foundation of China
文摘The interaction between pile and soft soil of the passive pile group subjected to soil movement was analyzed with three-dimensional finite element model by using ANSYS software. The soil was assumed to be elastic-plastic complying with the Drucker-Prager yield criterion in the analysis. The large displacement of soil was considered and contact elements were used to evaluate the interaction between pile and soil. The influences of soil depth of layer and number of piles on the lateral pressure of the pile were investigated, and the lateral pressure distributions on the (2×1) pile group and on the (2×2) pile group were compared. The results show that the adjacent surcharge may result in significant lateral movement of the soft soil and considerable pressure on the pile. The pressure acting on the row near the surcharge is higher than that on the other row, due to the "barrier" and arching effects in pile groups. The passive load and its distribution should be taken into account in the design of the passive piles.
基金supported by National Natural Science Foundation of China (Nos. 5217040329 and 51674091)Natural Science Foundation of Fujian Province (No. 2021J01640)the Open Foundation of the State Key Laboratory of Mineral Processing (Nos. BGRIMM-KJSKL-2021-02 and BGRIMM-KJSKL2022-03)。
文摘Magnetic interaction between magnetic particles is of great significance in the fields of magnetic separation and functional materials.A good understanding of interaction mechanism of magnetic particles would further boost its promising industrial applications.We hereby present our work which visualizes the movement behavior of magnetic spheres in magnetic fields employing high-speed imaging and simulates the dynamic behavior of spheres using an Arbitrary Lagrangian-Eulerian(ALE)based on finite element method.In this paper,we investigated the stress tensor,magnetic force,and dynamic behavior of magnetic spheres in magnetic fields,especially magnetic energy density in different domains.Results show that there are four relatively independent regions of magnetic energy density distribution in external spatial domains of a single sphere system.Attractive force will generate when the energy density in the spatial region between two spheres is relatively high,while a repulsive force will generate when the energy density in the spatial region between two spheres is relatively low.Every magnetic sphere spontaneously moves towards the region with high energy density and stays away from the region with low energy density.The total magnetic energy in magnetic spheres’domains(V_(1))and external spatial domains(V_(2))increases,but the magnetic energy in the external spatial domain decreases over time during the aggregation process.The magnetic spheres ultimately arrange in chain-like structures oriented along magnetic field direction.We hereby proposed a novel and efficient approach to predict the movement trends and final state of magnetic particle swarm from the view of energy density.
文摘In this paper, a 3D time domain technique is adopted to calculate the coupled hydrodynamic interaction between two bodies without flare in waves. For verifying the code, two same cylinders are selected to calculate coupled hydrodynamic effects by comparison with the results obtained by 3D frequency method which has been proved to be efficient for solving such problems. In order to improve efficiency of calculation, the effect of history time has been discussed, and an improved method is presented. Moreover, the effect of lateral separation distance is also discussed in detail. The technique developed here may serve as a more rigorous tool to analyze the related transient problems of two ships doing underway replenishment in waves.
基金This study was partially supported by the National Key Research and Development Program of China(Grant No.2018YFA0703000)the National Natural Science Foundation of China(Grant No.52075482)+1 种基金the Key Research and Development Program of Zhejiang Province(Grant No.2017CO1063)the National Natural Science Foundation of China(Grant No.51875518).
文摘The fabrication of multi-material medical phantoms with both patient-specificity and realistic mechanical properties is of great importance for the development of surgical planning and medical training.In this work,a 3D multi-material printing system for medical phantom manufacturing was developed.Rigid and elastomeric materials are firstly combined in such application for an accurate tactile feedback.The phantom is designed with multiple layers,where silicone ink,Thermoplastic Polyurethane(TPU),and Acrylonitrile Butadiene Styrene(ABS)were chosen as printing materials for skin,soft tissue,and bone,respectively.Then,the printed phantoms were utilized for the investigation of needle-phantom interaction by needle insertion experiments.The mechanical needle-phantom interaction was characterized by skin-soft tissue interfacial puncture force,puncture depth,and number of insertion force peaks.The experiments demonstrated that the manufacturing conditions,i.e.the silicone grease ratio,interfacial thickness and the infill rate,played effective roles in regulating mechanical needle-phantom interaction.Moreover,the influences of material properties,including interfacial thickness and ultimate stress,on needle-phantom interaction were studied by finite element simulation.Also,a patient-specific forearm phantom was printed,where the anatomical features were acquired from Computed Tomography(CT)data.This study provided a potential manufacturing method for multi-material medical phantoms with tunable mechanical properties and offered guidelines for better phantom design.
基金financially supported by the National Natural Science Foundation of China(No.51373003)Beijing Natural Science Foundation(No.2122059)
文摘In this paper,2D asynchronous spectra generated by using the DAOSD approach was utilized to probe interactions between Nd^3+ and pyridinium dissolved in aqueous solution.A series of cross peaks in the resultant 2D asynchronous spectrum confirms the occurrence of intermolecular interaction between Nd^3+and pyridinium.However,no coordination occurs between Nd^3+ and pyridinium.Interaction between πelectron from aromatic system and/electron from lanthanide ions account for the appearance of cross peaks in 2D asynchronous spectra.Because of the interaction,the emission spectrum of pyridinium exhibits a significant change when neodymium perchlorate was introduced into the system.
基金co-funded by a U.S.National Science Foundation(Grant EAR-0538119)to E.Calaisthe Advanced ERC(Grant 290864 RHEOLITH)to E.Burov and A.Koptev+2 种基金the Royal Academy of Netherlands visiting professor grant to E.Burovthe UPMC visiting professor grant to S.Cloetinghperformed on the ERC-funded SGI Ulysse cluster of ISTEP
文摘The East African Rift system (EARS) provides a unique system with the juxtaposition of two contrasting yet simultaneously formed rift branches, the eastern, magma-rich, and the western, magma-poor, on either sides of the old thick Tanzanian craton embedded in a younger lithosphere. Data on the pre-rifr, syn-rift and post-rift far-field volcanic and tectonic activity show that the EARS formed in the context of the interaction between a deep mantle plume and a horizontally and vertically heterogeneous lithosphere under far-field tectonic extension. We bring quantitative insights into this evolution by implementing high-resolution 3D thermo-mechanical numerical deformation models of a lithosphere of realistic rheology. The models focus on the central part of the EARS. We explore scenarios of plumelithosphere interaction with plumes of various size and initial position rising beneath a tectonically pre-stretched lithosphere. We test the impact of the inherited rheological discontinuities (suture zones) along the craton borders, of the rheological structure, of lithosphere plate thickness variations, and of physical and mechanical contrasts between the craton and the embedding lithosphere. Our experiments indicate that the ascending plume material is deflected by the cratonic keel and preferentially channeled along one of its sides, leading to the formation of a large rift zone along the eastern side of the craton, with significant magmatic activity and substantial melt amount derived from the mantle plume material. We show that the observed asymmetry of the central EARS, with coeval amagmatic (western) and magmatic (eastern) branches, can be explained by the splitting of warm material rising from a broad plume head whose initial position is slightly shifted to the eastern side of the craton. In that case, neither a mechanical weakness of the contact between the craton and the embedding lithosphere nor the presence of second plume are required to produce simulations that match observations. This result reconciles the passive and active rift models and demonstrates the possibility of development of both magmatic and amagmatic rifts in identical geotectonic environments.
文摘We present a method of 3D image mosaicing for real 3D representation of roadside buildings, and implement a Web-based interactive visualization environment for the 3D video mosaics created by 3D image mosaicing. The 3D image mo- saicing technique developed in our previous work is a very powerful method for creating textured 3D-GIS data without excessive data processing like the laser or stereo system. For the Web-based open access to the 3D video mosaics, we build an interactive visualization environment using X3D, the emerging standard of Web 3D. We conduct the data preprocessing for 3D video mosaics and the X3D modeling for textured 3D data. The data preprocessing includes the conversion of each frame of 3D video mosaics into concatenated image files that can be hyperlinked on the Web. The X3D modeling handles the representation of concatenated images using necessary X3D nodes. By employing X3D as the data format for 3D image mosaics, the real 3D representation of roadside buildings is extended to the Web and mobile service systems.
基金supported by the National Natural Science Foundation of China (Grants 11372333, 90916028)
文摘The properties of Mach stems in hypersonic corner flow induced by Mach interaction over 3D intersecting wedges were studied theoretically and numerically.A new method called "spatial dimension reduction" was used to analyze theoretically the location and Mach number behind Mach stems. By using this approach, the problem of 3D steady shock/shock interaction over 3D intersecting wedges was transformed into a 2D moving one on cross sections, which can be solved by shock-polar theory and shock dynamics theory. The properties of Mach interaction over 3D intersecting wedges can be analyzed with the new method,including pressure, temperature, density in the vicinity of triple points, location, and Mach number behind Mach stems.Theoretical results were compared with numerical results,and good agreement was obtained. Also, the influence of Mach number and wedge angle on the properties of a 3D Mach stem was studied.
基金support of JASSO to conduct this research work during the author’s stay at Japan
文摘Nowadays,there are many studies conducted in the field of marine hydrodynamics which focus on two vessels traveling and floating in sufficiently close proximity to experience significant interactions.The hydrodynamic behavior of parallel moving ships in waves is an interesting and important topic of late.A numerical investigation has been carried out for the prediction of wave exciting forces and motion responses of parallel moving ships in regular waves.The numerical solution was based on 3D distribution technique and using the linear wave theory to determine the exciting forces and ship's motion.The speed effects have been considered in the Green function for more realistic results.The numerical computations of wave exciting forces and motion responses were carried out for a Mariner and Series 60 for the purpose of discovering different Froude numbers and different separation distances in head sea conditions.Based on the numerical computations,it was revealed that the sway,roll and yaw have a significant effect due to hydrodynamic interaction.
基金funded under the National key research and development plan(2021YFC2101400)Chinese Academy of Engineering Strategic Research and Consulting Project(2023-XZ-79,2022-30-19)National Natural Science Foundation of China(22005019)。
文摘Three-dimensional(3D)bio-printing is an emerging tissue engineering technology,and its printing parameters have been upgraded to enable in-depth application in cell-cultured meat.However,excellent printable and edible bio-inks for cell-cultured meat are in urgent need of development.Therefore,a low-cost bio-ink based on albumin and gelatin was developed.At first,suitable printability of the bio-ink was determined by rheology analysis,excellent mechanical stability,and excellent mechanical stability of the printed scaffold was also proved by water absorption and degradation rate.Next,the biocompatibility of the scaffold and its interaction with cells were clarified through cell proliferation culture,cell status research and omics analysis.Notably,AG7 demonstrated better printability and AGS7 provided better conditions for cell attachment,proliferation and migration,S-shaped exponential growth curve further revealed the significant advantages of AGS7 scaffolds in cell culture.More importantly,the tissue culture process of muscle cells was simulated to organoid culture,which elucidated the interaction information between cells and scaffolds.This work has filled the vacancy in the industry and provides a novel strategy for the development of production of cell cultured meat.
文摘In this paper, by using the Lagrangian coordinates, the strongly oblique interactions between solitary waves with the same mode in a stratified fluid ape discussed, which includes the shallow fluid case and deep fluid case. It is found that the interactions are described by the KP equation for the shallow fluid case, the two-dimensional intermediate long wave equation (2D-ILW equation) for the deep fluid case and the two-dimensional BO equation (2D-BO equation) for the infinite deep fluid case.
文摘Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.However,the hydrological response of vegetated slopes,especially three-dimensional(3D)slopes covered with shrubs,under different rainfall patterns remains unclear and requires further investigation.To address this issue,this study adopts a novel 3D numerical model for simulating hydraulic interactions between the root system of the shrub and the surrounding soil.Three series of numerical parametric studies are conducted to investigate the influences of slope inclination,rainfall pattern and rainfall duration.Four rainfall patterns(advanced,bimodal,delayed,and uniform)and two rainfall durations(4-h intense and 168-h mild rainfall)are considered to study the hydrological response of the slope.The computed results show that 17%higher transpiration-induced suction is found for a steeper slope,which remains even after a short,intense rainfall with a 100-year return period.The extreme rainfalls with advanced(PA),bimodal(PB)and uniform(PU)rainfall patterns need to be considered for the short rainfall duration(4 h),while the delayed(PD)and uniform(PU)rainfall patterns are highly recommended for long rainfall durations(168 h).The presence of plants can improve slope stability markedly under extreme rainfall with a short duration(4 h).For the long duration(168 h),the benefit of the plant in preserving pore-water pressure(PWP)and slope stability may not be sufficient.
文摘In this article I will address the issue of the meaning of Embodied Artificial Intelligence(EAI)as it is configured today.My starting point is the refined interactive perspective on the semantics of EAI,as was recently suggested by Froese and colleagues.This perspective rests on the assumption that the concept of human bodily subjectivity must be extended to include meaning-making processes,which are enabled by advanced AI systems that may be incorporated in the human biological body.After having clarified the technical background,I will introduce the genetic component of the phenomenological method as a suitable tool to face the aforementioned issue.Towards this end,I will place the genetic method in the context of the so-called New Human-Machine Interaction(New HMI).I will further outline a genetic phenomenology of visual embodiment,suggesting a futuristic application based on the thesis of the“technological supplementation of phenomenological methodology”through the synthetic method.The case at stake is that of patients with a severe clinical picture characterised by the loss of corneal function,who in the near future could be treated with synthetic corneal prosthetic implants produced by a 3D bio-printing process by using an advanced EAI technique.I will conclude this article with a brief review of the main problems that still remain open.
文摘In view of the limitations of the mathematical method used in the container terminal logistics system, this paper uses Unity3D to establish a computer simulation model for the container automated yard, which dynamically displays the operation process of the container automated yard logistics system in real time. Through the plane four-parameter coordinate conversion method and by taking the Shanghai urban construction coordinate system as the medium, it completes the conversion from the satellite positioning reference ellipsoid coordinates to the three-dimensional virtual scene coordinates. The example results show that the method is reliable and practical, improves the accuracy and efficiency of positioning, and provides a reliable reference basis for the container terminal logistics system.