Robot-assisted minimally invasive surgery(RMIS)has attracted notable attention because of its numerous advantages over traditional surgery.Nevertheless,the lack of real-time force feedback in RMIS can result in surgic...Robot-assisted minimally invasive surgery(RMIS)has attracted notable attention because of its numerous advantages over traditional surgery.Nevertheless,the lack of real-time force feedback in RMIS can result in surgical errors and damage to delicate tissues.The stringent requirements for the sensitivity and volume of force sensors in RMIS make the design and fabrication of such sensors a considerable challenge.Herein,we present a high-sensitivity three-dimensional(3D)force sensing module consisting of a micro-electro-mechanical piezoresistive sensor chip and a polydimethylsiloxane cap with pyramidal microstructures for force transmission.The sensor chip incorporates four cantilevers with a circular microhole at their fixed ends to concentrate stress in piezoresistive areas;the shape of the microhole was optimized to ensure an appropriate trade-off between high sensitivity and reliability.The proposed 3D force sensor showed more than twice higher sensitivity in the X-,Y-,and Z-axis directions than the sensor based on traditional cantilevers.Furthermore,the proposed sensor exhibited little hysteresis(<1.91%),good stability,and fast response(~30 ms).An artificial neural network was adopted for 3D force decoupling;this network accurately converted resistance changes into 3D forces,showing a prediction error of<2%.Furthermore,the proposed sensor was integrated into a robot to perform various clamping tasks,exhibiting good application potential for RMIS.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.62401385)the Natural Science Foundation of Jiangsu Province(Grant No.BK20240803)+1 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.24KJB460025)the Open Fund of State Key Laboratory of Precision Measurement Technology and Instruments(Grant No.Pilab2413)。
文摘Robot-assisted minimally invasive surgery(RMIS)has attracted notable attention because of its numerous advantages over traditional surgery.Nevertheless,the lack of real-time force feedback in RMIS can result in surgical errors and damage to delicate tissues.The stringent requirements for the sensitivity and volume of force sensors in RMIS make the design and fabrication of such sensors a considerable challenge.Herein,we present a high-sensitivity three-dimensional(3D)force sensing module consisting of a micro-electro-mechanical piezoresistive sensor chip and a polydimethylsiloxane cap with pyramidal microstructures for force transmission.The sensor chip incorporates four cantilevers with a circular microhole at their fixed ends to concentrate stress in piezoresistive areas;the shape of the microhole was optimized to ensure an appropriate trade-off between high sensitivity and reliability.The proposed 3D force sensor showed more than twice higher sensitivity in the X-,Y-,and Z-axis directions than the sensor based on traditional cantilevers.Furthermore,the proposed sensor exhibited little hysteresis(<1.91%),good stability,and fast response(~30 ms).An artificial neural network was adopted for 3D force decoupling;this network accurately converted resistance changes into 3D forces,showing a prediction error of<2%.Furthermore,the proposed sensor was integrated into a robot to perform various clamping tasks,exhibiting good application potential for RMIS.