期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
联合混合卷积与级联群注意力机制的高光谱遥感影像分类
1
作者
王晓燕
梁文辉
+2 位作者
毕楚然
李杰
王禧钰
《光谱学与光谱分析》
北大核心
2025年第5期1485-1493,共9页
高光谱遥感影像丰富的光谱信息,能够为地物分类提供可靠的数据支持。但是,光谱数据高维、冗余,空谱特征联合困难、光谱特征提取不充分等问题对基于深度学习的高光谱遥感影像分类提出了挑战。卷积神经网络(CNN)和Vision Transformer(ViT...
高光谱遥感影像丰富的光谱信息,能够为地物分类提供可靠的数据支持。但是,光谱数据高维、冗余,空谱特征联合困难、光谱特征提取不充分等问题对基于深度学习的高光谱遥感影像分类提出了挑战。卷积神经网络(CNN)和Vision Transformer(ViT)是两种在计算机视觉领域中广泛使用的深度学习架构,各自有独特的优势和局限性。CNN擅长捕捉局部特征和空间层次结构,对图像的平移不变性有很好的处理能力。ViT通过自注意力机制能够捕捉图像中的全局依赖关系,对图像的复杂模式有较好的理解能力。为了提升高光谱遥感影像的分类精度,充分发挥CNN和ViT两种模型的优势,结合CNN的局部特征提取能力和ViT的全局上下文理解能力,创新性地将3D EfficientViT模块引入混合卷积,提出了一种联合混合卷积与级联群注意力机制的高光谱遥感影像分类算法EVIT3D_HSN。本算法在三维卷积提取高光谱遥感影像空谱联合特征及二维卷积提取空间特征的基础上引入3D Efficient ViT模块,提高了对不同数据集的泛化能力、更全面地捕捉了高光谱数据的图像特征,从而增强了分类算法的性能,同时并未增加模型复杂度。为了验证本算法的先进性,将本算法EVIT3D_HSN在高光谱遥感影像分类数据集India Pines、Pavia University和Salinas,与算法1DCNN、2DCNN、3DFCN和3DCNN进行对比实验,并于原算法HybridSN进行消融实验。EVIT3D_HSN在以上三种数据集的分类结果为:OA分别为97.66%、99.00%和99.65%,Kappa系数分别为97.3%、98.6%和99.6%。相比于1DCNN,模型分类精度分别提升了37.12%、25.09%和33.67%;相比于2DCNN,精度分别提升了59%、57.43%和46.92%;相比于3DFCN,精度分别提升了45.36%、24.5%和29.72%;相比于3DCNN,精度分别提升了28.05%、14.26%和34.29%;相比于HybridSN,分别提升了3.76%、1.85%和2.57%。此外,除IP数据集的Stone-Steel-Towers,PU数据集的Painted metal sheets和Shadows,以及SA数据集的Stubble地物之外,EVIT3D_HSN对其他共37种地物的F1值均最高。实验结果表明,EVIT3D_HSN在模型精度和泛化能力上的表现优于上述五种高光谱遥感影像分类算法,本模型具有良好的实用价值。
展开更多
关键词
高光谱遥感影像分类
混合卷积
3d
efficient
vit
级联群注意力
在线阅读
下载PDF
职称材料
题名
联合混合卷积与级联群注意力机制的高光谱遥感影像分类
1
作者
王晓燕
梁文辉
毕楚然
李杰
王禧钰
机构
北京物资学院系统科学与统计学院
北京物资学院信息学院
北京建筑大学机电与车辆工程学院
出处
《光谱学与光谱分析》
北大核心
2025年第5期1485-1493,共9页
基金
国家自然科学基金项目(51675494)
北京物资学院校级项目(2023XJKY14)
北京物资学院系统科学研究院(BWUISS47))资助。
文摘
高光谱遥感影像丰富的光谱信息,能够为地物分类提供可靠的数据支持。但是,光谱数据高维、冗余,空谱特征联合困难、光谱特征提取不充分等问题对基于深度学习的高光谱遥感影像分类提出了挑战。卷积神经网络(CNN)和Vision Transformer(ViT)是两种在计算机视觉领域中广泛使用的深度学习架构,各自有独特的优势和局限性。CNN擅长捕捉局部特征和空间层次结构,对图像的平移不变性有很好的处理能力。ViT通过自注意力机制能够捕捉图像中的全局依赖关系,对图像的复杂模式有较好的理解能力。为了提升高光谱遥感影像的分类精度,充分发挥CNN和ViT两种模型的优势,结合CNN的局部特征提取能力和ViT的全局上下文理解能力,创新性地将3D EfficientViT模块引入混合卷积,提出了一种联合混合卷积与级联群注意力机制的高光谱遥感影像分类算法EVIT3D_HSN。本算法在三维卷积提取高光谱遥感影像空谱联合特征及二维卷积提取空间特征的基础上引入3D Efficient ViT模块,提高了对不同数据集的泛化能力、更全面地捕捉了高光谱数据的图像特征,从而增强了分类算法的性能,同时并未增加模型复杂度。为了验证本算法的先进性,将本算法EVIT3D_HSN在高光谱遥感影像分类数据集India Pines、Pavia University和Salinas,与算法1DCNN、2DCNN、3DFCN和3DCNN进行对比实验,并于原算法HybridSN进行消融实验。EVIT3D_HSN在以上三种数据集的分类结果为:OA分别为97.66%、99.00%和99.65%,Kappa系数分别为97.3%、98.6%和99.6%。相比于1DCNN,模型分类精度分别提升了37.12%、25.09%和33.67%;相比于2DCNN,精度分别提升了59%、57.43%和46.92%;相比于3DFCN,精度分别提升了45.36%、24.5%和29.72%;相比于3DCNN,精度分别提升了28.05%、14.26%和34.29%;相比于HybridSN,分别提升了3.76%、1.85%和2.57%。此外,除IP数据集的Stone-Steel-Towers,PU数据集的Painted metal sheets和Shadows,以及SA数据集的Stubble地物之外,EVIT3D_HSN对其他共37种地物的F1值均最高。实验结果表明,EVIT3D_HSN在模型精度和泛化能力上的表现优于上述五种高光谱遥感影像分类算法,本模型具有良好的实用价值。
关键词
高光谱遥感影像分类
混合卷积
3d
efficient
vit
级联群注意力
Keywords
Hyperspectral remote sensing image classification
Hybrid convolution
3d efficient vit
Cascade group attention
分类号
TP751.1 [自动化与计算机技术—检测技术与自动化装置]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
联合混合卷积与级联群注意力机制的高光谱遥感影像分类
王晓燕
梁文辉
毕楚然
李杰
王禧钰
《光谱学与光谱分析》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部