无人机辅助通信系统是未来无线通信系统的重要组成部分。为进一步提高无人机辅助通信系统中时频资源的利用率,本文研究了一种基于非正交多址技术的无人机辅助通信架构,并提出了一种基于双延迟深度确定性策略梯度的TD3-TOPATM(twin delay...无人机辅助通信系统是未来无线通信系统的重要组成部分。为进一步提高无人机辅助通信系统中时频资源的利用率,本文研究了一种基于非正交多址技术的无人机辅助通信架构,并提出了一种基于双延迟深度确定性策略梯度的TD3-TOPATM(twin delayedtrajectory optimization and power allocation for total throughput maximization)算法,以最大化总吞吐量为目标,在满足最大功率约束、空间约束、最大飞行速度和服务质量(quality of service,QoS)约束的情况下,联合优化无人机的功率分配策略和3D轨迹。仿真实验分析结果表明,与随机算法相比,TD3-TOPATM算法能够实现98%的性能增益;与基于DQN(deep Q-network)的轨迹优化与资源分配算法相比,TD3-TOPATM算法获得的性能增益为19.4%;与基于深度确定性策略梯度的轨迹优化与资源分配算法相比,TD3-TOPATM算法得到的总吞吐量增加了9.7%;与基于正交多址技术的无人机辅助通信方案相比,基于非正交多址技术的无人机辅助通信方案实现了55%的性能增益。展开更多
3D Octave卷积模型在高空间-高光谱影像分类中的应用,可以提高多树种分类任务的精度,对提高森林管理的精细化水平具有重要意义。设计了一种结合三维Octave卷积与注意力机制的3DOC-SSAM模型,通过3D Octave卷积和空间—光谱注意力机制,提...3D Octave卷积模型在高空间-高光谱影像分类中的应用,可以提高多树种分类任务的精度,对提高森林管理的精细化水平具有重要意义。设计了一种结合三维Octave卷积与注意力机制的3DOC-SSAM模型,通过3D Octave卷积和空间—光谱注意力机制,提高了模型的运行效率和分类性能。研究结果表明:①3DOC-SSAM模型总体精度达到99.53%,相对于SVM、ELM、2D-CNN、3D-CNN分别提高了13.86%、18.49%、12.90%和5.36%。且平均精度AA达到99.38%,Kappa系数达0.9947。②小样本训练的情况下,总体精度和平均精度仍然能够达到96.9%和95.52%,高于对比的模型。研究结果为多树种分类任务提供了一个高效且高精度的解决方案,在林业遥感中的应用前景广阔,有助于提升森林资源管理的科学性和可持续性。展开更多
文摘无人机辅助通信系统是未来无线通信系统的重要组成部分。为进一步提高无人机辅助通信系统中时频资源的利用率,本文研究了一种基于非正交多址技术的无人机辅助通信架构,并提出了一种基于双延迟深度确定性策略梯度的TD3-TOPATM(twin delayedtrajectory optimization and power allocation for total throughput maximization)算法,以最大化总吞吐量为目标,在满足最大功率约束、空间约束、最大飞行速度和服务质量(quality of service,QoS)约束的情况下,联合优化无人机的功率分配策略和3D轨迹。仿真实验分析结果表明,与随机算法相比,TD3-TOPATM算法能够实现98%的性能增益;与基于DQN(deep Q-network)的轨迹优化与资源分配算法相比,TD3-TOPATM算法获得的性能增益为19.4%;与基于深度确定性策略梯度的轨迹优化与资源分配算法相比,TD3-TOPATM算法得到的总吞吐量增加了9.7%;与基于正交多址技术的无人机辅助通信方案相比,基于非正交多址技术的无人机辅助通信方案实现了55%的性能增益。