The centroid coordinate serves as a critical control parameter in motion systems,including aircraft,missiles,rockets,and drones,directly influencing their motion dynamics and control performance.Traditional methods fo...The centroid coordinate serves as a critical control parameter in motion systems,including aircraft,missiles,rockets,and drones,directly influencing their motion dynamics and control performance.Traditional methods for centroid measurement often necessitate custom equipment and specialized positioning devices,leading to high costs and limited accuracy.Here,we present a centroid measurement method that integrates 3D scanning technology,enabling accurate measurement of centroid across various types of objects without the need for specialized positioning fixtures.A theoretical framework for centroid measurement was established,which combined the principle of the multi-point weighing method with 3D scanning technology.The measurement accuracy was evaluated using a designed standard component.Experimental results demonstrate that the discrepancies between the theoretical and the measured centroid of a standard component with various materials and complex shapes in the X,Y,and Z directions are 0.003 mm,0.009 mm,and 0.105 mm,respectively,yielding a spatial deviation of 0.106 mm.Qualitative verification was conducted through experimental validation of three distinct types.They confirmed the reliability of the proposed method,which allowed for accurate centroid measurements of various products without requiring positioning fixtures.This advancement significantly broadened the applicability and scope of centroid measurement devices,offering new theoretical insights and methodologies for the measurement of complex parts and systems.展开更多
Three-dimensional(3D) scanning technology has undergone remarkable developments in recent years.Data acquired by 3D scanning have the form of 3D point clouds.The 3D scanned point clouds have data sizes that can be con...Three-dimensional(3D) scanning technology has undergone remarkable developments in recent years.Data acquired by 3D scanning have the form of 3D point clouds.The 3D scanned point clouds have data sizes that can be considered big data.They also contain measurement noise inherent in measurement data.These properties of 3D scanned point clouds make many traditional CG/visualization techniques difficult.This paper reviewed our recent achievements in developing varieties of high-quality visualizations suitable for the visual analysis of 3D scanned point clouds.We demonstrated the effectiveness of the method by applying the visualizations to various cultural heritage objects.The main visualization targets used in this paper are the floats in the Gion Festival in Kyoto(the float parade is on the UNESCO Intangible Cultural Heritage List) and Borobudur Temple in Indonesia(a UNESCO World Heritage Site).展开更多
This paper presents a handheld 3D vision-based scanner for small objects by using Kinect. It is different from the previous color-glove-based approaches which require segmenting the target object. First, we eliminate ...This paper presents a handheld 3D vision-based scanner for small objects by using Kinect. It is different from the previous color-glove-based approaches which require segmenting the target object. First, we eliminate the noises and the outliers caused by holding hands. Second, we apply Kinect-fusion algorithm and truncated signed distance function (TSDF) to represent 3D surfaces. Third, we propose a modified integration strategy to eliminate the hand effect. Fourth, we take advantage of the parallel computation of GPUs for real-time operation. The major contributions of this paper are (1) the registration precision is improved, (2) the oflline amendment and loop closure operation are not required, and (3) concave 3D object reconstruction is feasible.展开更多
This paper describes the development of an intelligent automated control system of a robot manipulator for plasma treatment of medical implants with complex shapes.The two-layer coatings from the Ti wire and hydroxyap...This paper describes the development of an intelligent automated control system of a robot manipulator for plasma treatment of medical implants with complex shapes.The two-layer coatings from the Ti wire and hydroxyapatite powders are applied on the surface of Ti medical implants by microplasma spraying to increase the biocompatibility of implants.The coating process requires precise control of a number of parameters,particularly the plasma spray distance and plasma jet traverse velocity.Thus,the development of the robotic plasma surface treatment involves automated path planning.The key idea of the proposed intelligent automatic control system is the use of data of preliminary three-dimensional (3D) scanning of the processed implant by the robot manipulator.The segmentation algorithm of the point cloud from laser scanning of the surface is developed.This methodology is suitable for robotic 3D scanning systems with both non-contact laser distance sensors and video cameras,used in additive manufacturing and medicine.展开更多
【目的】解决钢箱系杆拱桥的钢拱肋在施工过程中精度控制难度大和耗时长的问题。【方法】以某钢箱系杆拱桥为工程背景,采用建筑信息模型(building information modeling,BIM)及3D激光扫描技术,对拱肋钢构件在加工制作与拼接过程中的质...【目的】解决钢箱系杆拱桥的钢拱肋在施工过程中精度控制难度大和耗时长的问题。【方法】以某钢箱系杆拱桥为工程背景,采用建筑信息模型(building information modeling,BIM)及3D激光扫描技术,对拱肋钢构件在加工制作与拼接过程中的质量检测进行信息化管控。【结果】BIM技术结合3D激光扫描技术可快速地检测钢拱肋构件的质量并监测拱肋施工线形;钢箱拱肋构件的最大制作误差在1.2 mm以内,构件在拼接过程中的最大误差在1.1 mm以内,以上误差均满足设计规范的要求;与传统检测方法相比,点云数据在各坐标轴方向的偏差为1.0~3.0 mm,平均偏差为1.2~1.5 mm,具有较高的可靠性。【结论】基于BIM+3D激光扫描技术,可实现钢箱拱肋构件施工过程中拱肋线形质量的动态管控。展开更多
目的 探讨基于局部或全局特征点的3D牙模配准比对结果差异。方法 间隔6个月两次采集30名志愿者的上颌口内扫描模型(共60例),通过Geomagic Control X软件分别实施局部和全局特征点配准,计算配准后对应特征点间均方根(root mean square, R...目的 探讨基于局部或全局特征点的3D牙模配准比对结果差异。方法 间隔6个月两次采集30名志愿者的上颌口内扫描模型(共60例),通过Geomagic Control X软件分别实施局部和全局特征点配准,计算配准后对应特征点间均方根(root mean square, RMS)距离。将个体内牙模配准记为匹配组,将个体间牙模配准记为不匹配组,采用Mann-Whitney U检验分析组间差异。结果 两种配准方式下,匹配组的RMS距离均显著低于不匹配组(P<0.05),且组间RMS值分布不重叠。但局部特征点配准的RMS值不重叠区间(0.21~0.72 mm)略窄于全局特征点配准(0.18~0.79 mm)。结论 不重叠的RMS值区间表明两种3D牙模配准方法均具备个体识别潜力,但局部特征点配准的判别阈值区间相对较窄。展开更多
This paper surveys state-of-the-art image features and descriptors for the task of 3D scan registration based on panoramic reflectance images.As modern terrestrial laser scanners digitize their environment in a spheri...This paper surveys state-of-the-art image features and descriptors for the task of 3D scan registration based on panoramic reflectance images.As modern terrestrial laser scanners digitize their environment in a spherical way,the sphere has to be projected to a two-dimensional image.To this end,we evaluate the equirectangular,the cylindrical,the Mercator,the rectilinear,the Pannini,the stereographic,and the z-axis projection.We show that the Mercator and the Pannini projection outperform the other projection methods.展开更多
基金supported by National Natural Science Foundation of China(No.52176122).
文摘The centroid coordinate serves as a critical control parameter in motion systems,including aircraft,missiles,rockets,and drones,directly influencing their motion dynamics and control performance.Traditional methods for centroid measurement often necessitate custom equipment and specialized positioning devices,leading to high costs and limited accuracy.Here,we present a centroid measurement method that integrates 3D scanning technology,enabling accurate measurement of centroid across various types of objects without the need for specialized positioning fixtures.A theoretical framework for centroid measurement was established,which combined the principle of the multi-point weighing method with 3D scanning technology.The measurement accuracy was evaluated using a designed standard component.Experimental results demonstrate that the discrepancies between the theoretical and the measured centroid of a standard component with various materials and complex shapes in the X,Y,and Z directions are 0.003 mm,0.009 mm,and 0.105 mm,respectively,yielding a spatial deviation of 0.106 mm.Qualitative verification was conducted through experimental validation of three distinct types.They confirmed the reliability of the proposed method,which allowed for accurate centroid measurements of various products without requiring positioning fixtures.This advancement significantly broadened the applicability and scope of centroid measurement devices,offering new theoretical insights and methodologies for the measurement of complex parts and systems.
文摘Three-dimensional(3D) scanning technology has undergone remarkable developments in recent years.Data acquired by 3D scanning have the form of 3D point clouds.The 3D scanned point clouds have data sizes that can be considered big data.They also contain measurement noise inherent in measurement data.These properties of 3D scanned point clouds make many traditional CG/visualization techniques difficult.This paper reviewed our recent achievements in developing varieties of high-quality visualizations suitable for the visual analysis of 3D scanned point clouds.We demonstrated the effectiveness of the method by applying the visualizations to various cultural heritage objects.The main visualization targets used in this paper are the floats in the Gion Festival in Kyoto(the float parade is on the UNESCO Intangible Cultural Heritage List) and Borobudur Temple in Indonesia(a UNESCO World Heritage Site).
基金supported by the Ministry of Science and Technology of Taiwan under Grant No.MOST103-2221-E-468-006–MY1
文摘This paper presents a handheld 3D vision-based scanner for small objects by using Kinect. It is different from the previous color-glove-based approaches which require segmenting the target object. First, we eliminate the noises and the outliers caused by holding hands. Second, we apply Kinect-fusion algorithm and truncated signed distance function (TSDF) to represent 3D surfaces. Third, we propose a modified integration strategy to eliminate the hand effect. Fourth, we take advantage of the parallel computation of GPUs for real-time operation. The major contributions of this paper are (1) the registration precision is improved, (2) the oflline amendment and loop closure operation are not required, and (3) concave 3D object reconstruction is feasible.
基金supported by the Science Committee of RK MES under the Grant No. AP05130525。
文摘This paper describes the development of an intelligent automated control system of a robot manipulator for plasma treatment of medical implants with complex shapes.The two-layer coatings from the Ti wire and hydroxyapatite powders are applied on the surface of Ti medical implants by microplasma spraying to increase the biocompatibility of implants.The coating process requires precise control of a number of parameters,particularly the plasma spray distance and plasma jet traverse velocity.Thus,the development of the robotic plasma surface treatment involves automated path planning.The key idea of the proposed intelligent automatic control system is the use of data of preliminary three-dimensional (3D) scanning of the processed implant by the robot manipulator.The segmentation algorithm of the point cloud from laser scanning of the surface is developed.This methodology is suitable for robotic 3D scanning systems with both non-contact laser distance sensors and video cameras,used in additive manufacturing and medicine.
文摘This paper surveys state-of-the-art image features and descriptors for the task of 3D scan registration based on panoramic reflectance images.As modern terrestrial laser scanners digitize their environment in a spherical way,the sphere has to be projected to a two-dimensional image.To this end,we evaluate the equirectangular,the cylindrical,the Mercator,the rectilinear,the Pannini,the stereographic,and the z-axis projection.We show that the Mercator and the Pannini projection outperform the other projection methods.