The three-dimensional (3D) processing maps considering strain based on the two-dimensional (2D) processing maps proposed by PRASAD can describe the distribution of the efficiency of power dissipation and flow inst...The three-dimensional (3D) processing maps considering strain based on the two-dimensional (2D) processing maps proposed by PRASAD can describe the distribution of the efficiency of power dissipation and flow instability regions at various temperatures, strain rates and strains, which exhibit intrinsic workability related to material itself. Finite element (FE) simulation can obtain the distribution of strain, strain rate, temperature and die filling status, which indicates state-of-stress (SOS) workability decided by die shape and different processing conditions. On the basis of this, a new material driven analysis method for hot deformation was put forward by the combination of FE simulation with 3D processing maps, which can demonstrate material workability of the entire hot deformation process including SOS workability and intrinsic workability. The hot forging process for hard-to-work metal magnesium alloy was studied, and the 3D thermomechanical FE simulation including 3D processing maps of complex hot forging spur bevel gear was first conducted. The hot forging experiments were carried out. The results show that the new method is reasonable and suitable to determine the aoorooriate nrocess narameters.展开更多
Depth maps are used for synthesis virtual view in free-viewpoint television (FTV) systems. When depth maps are derived using existing depth estimation methods, the depth distortions will cause undesirable artifacts ...Depth maps are used for synthesis virtual view in free-viewpoint television (FTV) systems. When depth maps are derived using existing depth estimation methods, the depth distortions will cause undesirable artifacts in the synthesized views. To solve this problem, a 3D video quality model base depth maps (D-3DV) for virtual view synthesis and depth map coding in the FTV applications is proposed. First, the relationships between distortions in coded depth map and rendered view are derived. Then, a precisely 3DV quality model based depth characteristics is develop for the synthesized virtual views. Finally, based on D-3DV model, a multilateral filtering is applied as a pre-processed filter to reduce rendering artifacts. The experimental results evaluated by objective and subjective methods indicate that the proposed D-3DV model can reduce bit-rate of depth coding and achieve better rendering quality.展开更多
In this study,a machine vision-based pattern matching technique was applied to estimate the location of an autonomous driving robot and perform 3D tunnel mapping in an underground mine environment.The autonomous drivi...In this study,a machine vision-based pattern matching technique was applied to estimate the location of an autonomous driving robot and perform 3D tunnel mapping in an underground mine environment.The autonomous driving robot continuously detects the wall of the tunnel in the horizontal direction using the light detection and ranging(Li DAR)sensor and performs pattern matching by recognizing the shape of the tunnel wall.The proposed method was designed to measure the heading of the robot by fusion with the inertial measurement units sensor according to the pattern matching accuracy;it is combined with the encoder sensor to estimate the location of the robot.In addition,when the robot is driving,the vertical direction of the underground mine is scanned through the vertical Li DAR sensor and stacked to create a 3D map of the underground mine.The performance of the proposed method was superior to that of previous studies;the mean absolute error achieved was 0.08 m for the X-Y axes.A root mean square error of 0.05 m^(2)was achieved by comparing the tunnel section maps that were created by the autonomous driving robot to those of manual surveying.展开更多
Digital soil mapping (DSM) aims to produce detailed maps of soil properties or soil classes to improve agricultural management and soil quality assessment. Optimized sampling design can reduce the substantial costs an...Digital soil mapping (DSM) aims to produce detailed maps of soil properties or soil classes to improve agricultural management and soil quality assessment. Optimized sampling design can reduce the substantial costs and efforts associated with sampling, profile description, and laboratory analysis. The purpose of this study was to compare common sampling designs for DSM, including grid sampling (GS), grid random sampling (GRS), stratified random sampling (StRS), and conditioned Latin hypercube sampling (cLHS). In an agricultural field (11 ha) in Quebec, Canada, a total of unique 118 locations were selected using each of the four sampling designs (45 locations each), and additional 30 sample locations were selected as an independent testing dataset (evaluation dataset). Soil visible near-infrared (Vis-NIR) spectra were collected in situ at the 148 locations (1 m depth), and soil cores were collected from a subset of 32 locations and subdivided at 10-cm depth intervals, totaling 251 samples. The Cubist model was used to elucidate the relationship between Vis-NIR spectra and soil properties (soil organic matter (SOM) and clay), which was then used to predict the soil properties at all 148 sample locations. Digital maps of soil properties at multiple depths for the entire field (148 sample locations) were prepared using a quantile random forest model to obtain complete model maps (CM-maps). Soil properties were also mapped using the samples from each of the 45 locations for each sampling design to obtain sampling design maps (SD-maps). The SD-maps were evaluated using the independent testing dataset (30 sample locations), and the spatial distribution and model uncertainty of each SD-map were compared with those of the corresponding CM-map. The spatial and feature space coverage were compared across the four sampling designs. The results showed that GS resulted in the most even spatial coverage, cLHS resulted in the best coverage of the feature space, and GS and cLHS resulted in similar prediction accuracies and spatial distributions of soil properties. The SOM content was underestimated using GRS, with large errors at 0–50 cm depth, due to some values not being captured by this sampling design, whereas larger errors for the deeper soil layers were produced using StRS. Predictions of SOM and clay contents had higher accuracy for topsoil (0–30 cm) than for deep subsoil (60–100 cm). It was concluded that the soil sampling designs with either good spatial coverage or feature space coverage can provide good accuracy in 3D DSM, but their performances may be different for different soil properties.展开更多
Sampling design(SD) plays a crucial role in providing reliable input for digital soil mapping(DSM) and increasing its efficiency.Sampling design, with a predetermined sample size and consideration of budget and spatia...Sampling design(SD) plays a crucial role in providing reliable input for digital soil mapping(DSM) and increasing its efficiency.Sampling design, with a predetermined sample size and consideration of budget and spatial variability, is a selection procedure for identifying a set of sample locations spread over a geographical space or with a good feature space coverage. A good feature space coverage ensures accurate estimation of regression parameters, while spatial coverage contributes to effective spatial interpolation.First, we review several statistical and geometric SDs that mainly optimize the sampling pattern in a geographical space and illustrate the strengths and weaknesses of these SDs by considering spatial coverage, simplicity, accuracy, and efficiency. Furthermore, Latin hypercube sampling, which obtains a full representation of multivariate distribution in geographical space, is described in detail for its development, improvement, and application. In addition, we discuss the fuzzy k-means sampling, response surface sampling, and Kennard-Stone sampling, which optimize sampling patterns in a feature space. We then discuss some practical applications that are mainly addressed by the conditioned Latin hypercube sampling with the flexibility and feasibility of adding multiple optimization criteria. We also discuss different methods of validation, an important stage of DSM, and conclude that an independent dataset selected from the probability sampling is superior for its free model assumptions. For future work, we recommend: 1) exploring SDs with both good spatial coverage and feature space coverage; 2) uncovering the real impacts of an SD on the integral DSM procedure;and 3) testing the feasibility and contribution of SDs in three-dimensional(3 D) DSM with variability for multiple layers.展开更多
AIM: To explore a more accurate quantifying diagnosis method of diabetic macular edema(DME) by displaying detailed 3D morphometry beyond the gold-standard quantification indicator-central retinal thickness(CRT) and ap...AIM: To explore a more accurate quantifying diagnosis method of diabetic macular edema(DME) by displaying detailed 3D morphometry beyond the gold-standard quantification indicator-central retinal thickness(CRT) and apply it in follow-up of DME patients.METHODS: Optical coherence tomography(OCT) scans of 229 eyes from 160 patients were collected.We manually annotated cystoid macular edema(CME), subretinal fluid(SRF) and fovea as ground truths.Deep convolution neural networks(DCNNs) were constructed including U-Net, sASPP, HRNetV2-W48, and HRNetV2-W48+Object-Contextual Representation(OCR) for fluid(CME+SRF) segmentation and fovea detection respectively, based on which the thickness maps of CME, SRF and retina were generated and divided by Early Treatment Diabetic Retinopathy Study(ETDRS) grid.RESULTS: In fluid segmentation, with the best DCNN constructed and loss function, the dice similarity coefficients(DSC) of segmentation reached 0.78(CME), 0.82(SRF), and 0.95(retina).In fovea detection, the average deviation between the predicted fovea and the ground truth reached 145.7±117.8 μm.The generated macular edema thickness maps are able to discover center-involved DME by intuitive morphometry and fluid volume, which is ignored by the traditional definition of CRT>250 μm.Thickness maps could also help to discover fluid above or below the fovea center ignored or underestimated by a single OCT B-scan.CONCLUSION: Compared to the traditional unidimensional indicator-CRT, 3D macular edema thickness maps are able to display more intuitive morphometry and detailed statistics of DME, supporting more accurate diagnoses and follow-up of DME patients.展开更多
Background:Cryoablation of accessory pathways(APs)is effective and very safe in children,as previously reported by our group.The aim of this retrospective study was to evaluate the current efficacy of 3D non-fluorosco...Background:Cryoablation of accessory pathways(APs)is effective and very safe in children,as previously reported by our group.The aim of this retrospective study was to evaluate the current efficacy of 3D non-fluoroscopic cryoablation of right sided APs in children,comparing results obtained with the Ensite VelocityTM and the more recent Ensite PrecisionTM 3D mapping systems.Methods and Results:From January 2016 to December 2019,102 pediatric patients[mean age 12.5±2.8,62 males(61%of total cohort)]with right APs underwent 3D non-fluoroscopic transcatheter cryoablation at our Institution.Fifteen(14.7%)patients had previously undergone catheter ablation.Acute procedural success rate was 95.1%(n=97).No significant differences were detected in acute success rates achieved with Ensite Velocity^(TM)or Ensite PrecisionTM systems nor between manifest(94%)and concealed APs(100%).No permanent complications occurred.During follow-up(428±286 days,median 396 days[interquartile range 179-713]),19 patients(19.6%)had recurrences.Recurrences were more frequent for parahissian/anterior APs compared to midseptal/posterior and lateral APs(p=0.043).Recurrences were not related to the Ensite system used.A redo ablation procedure was attempted in 13 cases,11 cryoablation and 2 radiofrequency ablations:the former was successful in 10 cases out of 11(90.9%).Conclusion:3D cryoablation of right-sided APs is associated with a very high acute success rate with limited use of fluoroscopy,resulting in great benefit to the children.Recurrence rates are not high and patients can be retreated with cryo-energy with higher success rates.展开更多
This paper proposes an improved high-precision 3D semantic mapping method for indoor scenes using RGB-D images.The current semantic mapping algorithms suffer from low semantic annotation accuracy and insufficient real...This paper proposes an improved high-precision 3D semantic mapping method for indoor scenes using RGB-D images.The current semantic mapping algorithms suffer from low semantic annotation accuracy and insufficient real-time performance.To address these issues,we first adopt the Elastic Fusion algorithm to select key frames from indoor environment image sequences captured by the Kinect sensor and construct the indoor environment space model.Then,an indoor RGB-D image semantic segmentation network is proposed,which uses multi-scale feature fusion to quickly and accurately obtain object labeling information at the pixel level of the spatial point cloud model.Finally,Bayesian updating is used to conduct incremental semantic label fusion on the established spatial point cloud model.We also employ dense conditional random fields(CRF)to optimize the 3D semantic map model,resulting in a high-precision spatial semantic map of indoor scenes.Experimental results show that the proposed semantic mapping system can process image sequences collected by RGB-D sensors in real-time and output accurate semantic segmentation results of indoor scene images and the current local spatial semantic map.Finally,it constructs a globally consistent high-precision indoor scenes 3D semantic map.展开更多
In this paper,we propose a novel secure image communication system that integrates quantum key distribution and hyperchaotic encryption techniques to ensure enhanced security for both key distribution and plaintext en...In this paper,we propose a novel secure image communication system that integrates quantum key distribution and hyperchaotic encryption techniques to ensure enhanced security for both key distribution and plaintext encryption.Specifically,we leverage the B92 Quantum Key Distribution(QKD)protocol to secure the distribution of encryption keys,which are further processed through Galois Field(GF(28))operations for increased security.The encrypted plaintext is secured using a newly developed Hyper 3D Logistic Map(H3LM),a chaotic system that generates complex and unpredictable sequences,thereby ensuring strong confusion and diffusion in the encryption process.This hybrid approach offers a robust defense against quantum and classical cryptographic attacks,combining the advantages of quantum-level key distribution with the unpredictability of hyperchaos-based encryption.The proposed method demonstrates high sensitivity to key changes and resilience to noise,compression,and cropping attacks,ensuring both secure key transmission and robust image encryption.展开更多
With the continuous development of economy and technology, China has intensified its efforts in building construction in daily life. People's requirements for architecture are also relatively improved. At this tim...With the continuous development of economy and technology, China has intensified its efforts in building construction in daily life. People's requirements for architecture are also relatively improved. At this time, the quality of the project must be paid attention to. If you want to ensure the engineering quality, the engineering survey must be accurate without any mistakes. This paper aims at the in-depth study of the application of 3D mapping technology in modern engineering survey. Three-dimensional mapping technology is explained in detail from five aspects.展开更多
基金Project(2011ZX04014-051)supported by the Key Scientific and Technical Project of ChinaProjects(51375306,50905110)supported by the National Natural Science Foundation of China
文摘The three-dimensional (3D) processing maps considering strain based on the two-dimensional (2D) processing maps proposed by PRASAD can describe the distribution of the efficiency of power dissipation and flow instability regions at various temperatures, strain rates and strains, which exhibit intrinsic workability related to material itself. Finite element (FE) simulation can obtain the distribution of strain, strain rate, temperature and die filling status, which indicates state-of-stress (SOS) workability decided by die shape and different processing conditions. On the basis of this, a new material driven analysis method for hot deformation was put forward by the combination of FE simulation with 3D processing maps, which can demonstrate material workability of the entire hot deformation process including SOS workability and intrinsic workability. The hot forging process for hard-to-work metal magnesium alloy was studied, and the 3D thermomechanical FE simulation including 3D processing maps of complex hot forging spur bevel gear was first conducted. The hot forging experiments were carried out. The results show that the new method is reasonable and suitable to determine the aoorooriate nrocess narameters.
基金supported by the National Natural Science Foundation of China(Grant No.60832003)Key Laboratory of Advanced Display and System Application(Shanghai University),Ministry of Education,China(Grant No.P200902)the Key Project of Science and Technology Commission of Shanghai Municipality(Grant No.10510500500)
文摘Depth maps are used for synthesis virtual view in free-viewpoint television (FTV) systems. When depth maps are derived using existing depth estimation methods, the depth distortions will cause undesirable artifacts in the synthesized views. To solve this problem, a 3D video quality model base depth maps (D-3DV) for virtual view synthesis and depth map coding in the FTV applications is proposed. First, the relationships between distortions in coded depth map and rendered view are derived. Then, a precisely 3DV quality model based depth characteristics is develop for the synthesized virtual views. Finally, based on D-3DV model, a multilateral filtering is applied as a pre-processed filter to reduce rendering artifacts. The experimental results evaluated by objective and subjective methods indicate that the proposed D-3DV model can reduce bit-rate of depth coding and achieve better rendering quality.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2021R1A2C1011216)。
文摘In this study,a machine vision-based pattern matching technique was applied to estimate the location of an autonomous driving robot and perform 3D tunnel mapping in an underground mine environment.The autonomous driving robot continuously detects the wall of the tunnel in the horizontal direction using the light detection and ranging(Li DAR)sensor and performs pattern matching by recognizing the shape of the tunnel wall.The proposed method was designed to measure the heading of the robot by fusion with the inertial measurement units sensor according to the pattern matching accuracy;it is combined with the encoder sensor to estimate the location of the robot.In addition,when the robot is driving,the vertical direction of the underground mine is scanned through the vertical Li DAR sensor and stacked to create a 3D map of the underground mine.The performance of the proposed method was superior to that of previous studies;the mean absolute error achieved was 0.08 m for the X-Y axes.A root mean square error of 0.05 m^(2)was achieved by comparing the tunnel section maps that were created by the autonomous driving robot to those of manual surveying.
基金the National Science and Engineering Research Council of Canada(No.RGPIN-2014-04100)for funding this project.
文摘Digital soil mapping (DSM) aims to produce detailed maps of soil properties or soil classes to improve agricultural management and soil quality assessment. Optimized sampling design can reduce the substantial costs and efforts associated with sampling, profile description, and laboratory analysis. The purpose of this study was to compare common sampling designs for DSM, including grid sampling (GS), grid random sampling (GRS), stratified random sampling (StRS), and conditioned Latin hypercube sampling (cLHS). In an agricultural field (11 ha) in Quebec, Canada, a total of unique 118 locations were selected using each of the four sampling designs (45 locations each), and additional 30 sample locations were selected as an independent testing dataset (evaluation dataset). Soil visible near-infrared (Vis-NIR) spectra were collected in situ at the 148 locations (1 m depth), and soil cores were collected from a subset of 32 locations and subdivided at 10-cm depth intervals, totaling 251 samples. The Cubist model was used to elucidate the relationship between Vis-NIR spectra and soil properties (soil organic matter (SOM) and clay), which was then used to predict the soil properties at all 148 sample locations. Digital maps of soil properties at multiple depths for the entire field (148 sample locations) were prepared using a quantile random forest model to obtain complete model maps (CM-maps). Soil properties were also mapped using the samples from each of the 45 locations for each sampling design to obtain sampling design maps (SD-maps). The SD-maps were evaluated using the independent testing dataset (30 sample locations), and the spatial distribution and model uncertainty of each SD-map were compared with those of the corresponding CM-map. The spatial and feature space coverage were compared across the four sampling designs. The results showed that GS resulted in the most even spatial coverage, cLHS resulted in the best coverage of the feature space, and GS and cLHS resulted in similar prediction accuracies and spatial distributions of soil properties. The SOM content was underestimated using GRS, with large errors at 0–50 cm depth, due to some values not being captured by this sampling design, whereas larger errors for the deeper soil layers were produced using StRS. Predictions of SOM and clay contents had higher accuracy for topsoil (0–30 cm) than for deep subsoil (60–100 cm). It was concluded that the soil sampling designs with either good spatial coverage or feature space coverage can provide good accuracy in 3D DSM, but their performances may be different for different soil properties.
基金funded by the Natural Science and Engineering Research Council (NSERC) of Canada (No. RGPIN-2014-04100)
文摘Sampling design(SD) plays a crucial role in providing reliable input for digital soil mapping(DSM) and increasing its efficiency.Sampling design, with a predetermined sample size and consideration of budget and spatial variability, is a selection procedure for identifying a set of sample locations spread over a geographical space or with a good feature space coverage. A good feature space coverage ensures accurate estimation of regression parameters, while spatial coverage contributes to effective spatial interpolation.First, we review several statistical and geometric SDs that mainly optimize the sampling pattern in a geographical space and illustrate the strengths and weaknesses of these SDs by considering spatial coverage, simplicity, accuracy, and efficiency. Furthermore, Latin hypercube sampling, which obtains a full representation of multivariate distribution in geographical space, is described in detail for its development, improvement, and application. In addition, we discuss the fuzzy k-means sampling, response surface sampling, and Kennard-Stone sampling, which optimize sampling patterns in a feature space. We then discuss some practical applications that are mainly addressed by the conditioned Latin hypercube sampling with the flexibility and feasibility of adding multiple optimization criteria. We also discuss different methods of validation, an important stage of DSM, and conclude that an independent dataset selected from the probability sampling is superior for its free model assumptions. For future work, we recommend: 1) exploring SDs with both good spatial coverage and feature space coverage; 2) uncovering the real impacts of an SD on the integral DSM procedure;and 3) testing the feasibility and contribution of SDs in three-dimensional(3 D) DSM with variability for multiple layers.
文摘AIM: To explore a more accurate quantifying diagnosis method of diabetic macular edema(DME) by displaying detailed 3D morphometry beyond the gold-standard quantification indicator-central retinal thickness(CRT) and apply it in follow-up of DME patients.METHODS: Optical coherence tomography(OCT) scans of 229 eyes from 160 patients were collected.We manually annotated cystoid macular edema(CME), subretinal fluid(SRF) and fovea as ground truths.Deep convolution neural networks(DCNNs) were constructed including U-Net, sASPP, HRNetV2-W48, and HRNetV2-W48+Object-Contextual Representation(OCR) for fluid(CME+SRF) segmentation and fovea detection respectively, based on which the thickness maps of CME, SRF and retina were generated and divided by Early Treatment Diabetic Retinopathy Study(ETDRS) grid.RESULTS: In fluid segmentation, with the best DCNN constructed and loss function, the dice similarity coefficients(DSC) of segmentation reached 0.78(CME), 0.82(SRF), and 0.95(retina).In fovea detection, the average deviation between the predicted fovea and the ground truth reached 145.7±117.8 μm.The generated macular edema thickness maps are able to discover center-involved DME by intuitive morphometry and fluid volume, which is ignored by the traditional definition of CRT>250 μm.Thickness maps could also help to discover fluid above or below the fovea center ignored or underestimated by a single OCT B-scan.CONCLUSION: Compared to the traditional unidimensional indicator-CRT, 3D macular edema thickness maps are able to display more intuitive morphometry and detailed statistics of DME, supporting more accurate diagnoses and follow-up of DME patients.
文摘Background:Cryoablation of accessory pathways(APs)is effective and very safe in children,as previously reported by our group.The aim of this retrospective study was to evaluate the current efficacy of 3D non-fluoroscopic cryoablation of right sided APs in children,comparing results obtained with the Ensite VelocityTM and the more recent Ensite PrecisionTM 3D mapping systems.Methods and Results:From January 2016 to December 2019,102 pediatric patients[mean age 12.5±2.8,62 males(61%of total cohort)]with right APs underwent 3D non-fluoroscopic transcatheter cryoablation at our Institution.Fifteen(14.7%)patients had previously undergone catheter ablation.Acute procedural success rate was 95.1%(n=97).No significant differences were detected in acute success rates achieved with Ensite Velocity^(TM)or Ensite PrecisionTM systems nor between manifest(94%)and concealed APs(100%).No permanent complications occurred.During follow-up(428±286 days,median 396 days[interquartile range 179-713]),19 patients(19.6%)had recurrences.Recurrences were more frequent for parahissian/anterior APs compared to midseptal/posterior and lateral APs(p=0.043).Recurrences were not related to the Ensite system used.A redo ablation procedure was attempted in 13 cases,11 cryoablation and 2 radiofrequency ablations:the former was successful in 10 cases out of 11(90.9%).Conclusion:3D cryoablation of right-sided APs is associated with a very high acute success rate with limited use of fluoroscopy,resulting in great benefit to the children.Recurrence rates are not high and patients can be retreated with cryo-energy with higher success rates.
基金This work was supported in part by the National Natural Science Foundation of China under Grant U20A20225,61833013in part by Shaanxi Provincial Key Research and Development Program under Grant 2022-GY111.
文摘This paper proposes an improved high-precision 3D semantic mapping method for indoor scenes using RGB-D images.The current semantic mapping algorithms suffer from low semantic annotation accuracy and insufficient real-time performance.To address these issues,we first adopt the Elastic Fusion algorithm to select key frames from indoor environment image sequences captured by the Kinect sensor and construct the indoor environment space model.Then,an indoor RGB-D image semantic segmentation network is proposed,which uses multi-scale feature fusion to quickly and accurately obtain object labeling information at the pixel level of the spatial point cloud model.Finally,Bayesian updating is used to conduct incremental semantic label fusion on the established spatial point cloud model.We also employ dense conditional random fields(CRF)to optimize the 3D semantic map model,resulting in a high-precision spatial semantic map of indoor scenes.Experimental results show that the proposed semantic mapping system can process image sequences collected by RGB-D sensors in real-time and output accurate semantic segmentation results of indoor scene images and the current local spatial semantic map.Finally,it constructs a globally consistent high-precision indoor scenes 3D semantic map.
文摘In this paper,we propose a novel secure image communication system that integrates quantum key distribution and hyperchaotic encryption techniques to ensure enhanced security for both key distribution and plaintext encryption.Specifically,we leverage the B92 Quantum Key Distribution(QKD)protocol to secure the distribution of encryption keys,which are further processed through Galois Field(GF(28))operations for increased security.The encrypted plaintext is secured using a newly developed Hyper 3D Logistic Map(H3LM),a chaotic system that generates complex and unpredictable sequences,thereby ensuring strong confusion and diffusion in the encryption process.This hybrid approach offers a robust defense against quantum and classical cryptographic attacks,combining the advantages of quantum-level key distribution with the unpredictability of hyperchaos-based encryption.The proposed method demonstrates high sensitivity to key changes and resilience to noise,compression,and cropping attacks,ensuring both secure key transmission and robust image encryption.
文摘With the continuous development of economy and technology, China has intensified its efforts in building construction in daily life. People's requirements for architecture are also relatively improved. At this time, the quality of the project must be paid attention to. If you want to ensure the engineering quality, the engineering survey must be accurate without any mistakes. This paper aims at the in-depth study of the application of 3D mapping technology in modern engineering survey. Three-dimensional mapping technology is explained in detail from five aspects.