Arabic Sign Language(ArSL)recognition plays a vital role in enhancing the communication for the Deaf and Hard of Hearing(DHH)community.Researchers have proposed multiple methods for automated recognition of ArSL;howev...Arabic Sign Language(ArSL)recognition plays a vital role in enhancing the communication for the Deaf and Hard of Hearing(DHH)community.Researchers have proposed multiple methods for automated recognition of ArSL;however,these methods face multiple challenges that include high gesture variability,occlusions,limited signer diversity,and the scarcity of large annotated datasets.Existing methods,often relying solely on either skeletal data or video-based features,struggle with generalization and robustness,especially in dynamic and real-world conditions.This paper proposes a novel multimodal ensemble classification framework that integrates geometric features derived from 3D skeletal joint distances and angles with temporal features extracted from RGB videos using the Inflated 3D ConvNet(I3D).By fusing these complementary modalities at the feature level and applying a majority-voting ensemble of XGBoost,Random Forest,and Support Vector Machine classifiers,the framework robustly captures both spatial configurations and motion dynamics of sign gestures.Feature selection using the Pearson Correlation Coefficient further enhances efficiency by reducing redundancy.Extensive experiments on the ArabSign dataset,which includes RGB videos and corresponding skeletal data,demonstrate that the proposed approach significantly outperforms state-of-the-art methods,achieving an average F1-score of 97%using a majority-voting ensemble of XGBoost,Random Forest,and SVM classifiers,and improving recognition accuracy by more than 7%over previous best methods.This work not only advances the technical stateof-the-art in ArSL recognition but also provides a scalable,real-time solution for practical deployment in educational,social,and assistive communication technologies.Even though this study is about Arabic Sign Language,the framework proposed here can be extended to different sign languages,creating possibilities for potentially worldwide applicability in sign language recognition tasks.展开更多
目前基于3D-ConvNet的行为识别算法普遍使用全局平均池化(global average pooling,GAP)压缩特征信息,但会产生信息损失、信息冗余和网络过拟合等问题。为了解决上述问题,更好地保留卷积层提取到的高级语义信息,提出了基于全局频域池化(g...目前基于3D-ConvNet的行为识别算法普遍使用全局平均池化(global average pooling,GAP)压缩特征信息,但会产生信息损失、信息冗余和网络过拟合等问题。为了解决上述问题,更好地保留卷积层提取到的高级语义信息,提出了基于全局频域池化(global frequency domain pooling,GFDP)的行为识别算法。首先,根据离散余弦变换(discrete cosine transform,DCT)看出,GAP是频域中特征分解的一种特例,从而引入更多频率分量增加特征通道间的特异性,减少信息压缩后的信息冗余;其次,为了更好地抑制过拟合问题,引入卷积层的批标准化策略,并将其拓展在以ERB(efficient residual block)-Res3D为骨架的行为识别模型的全连接层以优化数据分布;最后,将该方法在UCF101数据集上进行验证。结果表明,模型计算量为3.5 GFlops,参数量为7.4 M,最终的识别准确率在ERB-Res3D模型的基础上提升了3.9%,在原始Res3D模型基础上提升了17.4%,高效实现了更加准确的行为识别结果。展开更多
基金funding this work through Research Group No.KS-2024-376.
文摘Arabic Sign Language(ArSL)recognition plays a vital role in enhancing the communication for the Deaf and Hard of Hearing(DHH)community.Researchers have proposed multiple methods for automated recognition of ArSL;however,these methods face multiple challenges that include high gesture variability,occlusions,limited signer diversity,and the scarcity of large annotated datasets.Existing methods,often relying solely on either skeletal data or video-based features,struggle with generalization and robustness,especially in dynamic and real-world conditions.This paper proposes a novel multimodal ensemble classification framework that integrates geometric features derived from 3D skeletal joint distances and angles with temporal features extracted from RGB videos using the Inflated 3D ConvNet(I3D).By fusing these complementary modalities at the feature level and applying a majority-voting ensemble of XGBoost,Random Forest,and Support Vector Machine classifiers,the framework robustly captures both spatial configurations and motion dynamics of sign gestures.Feature selection using the Pearson Correlation Coefficient further enhances efficiency by reducing redundancy.Extensive experiments on the ArabSign dataset,which includes RGB videos and corresponding skeletal data,demonstrate that the proposed approach significantly outperforms state-of-the-art methods,achieving an average F1-score of 97%using a majority-voting ensemble of XGBoost,Random Forest,and SVM classifiers,and improving recognition accuracy by more than 7%over previous best methods.This work not only advances the technical stateof-the-art in ArSL recognition but also provides a scalable,real-time solution for practical deployment in educational,social,and assistive communication technologies.Even though this study is about Arabic Sign Language,the framework proposed here can be extended to different sign languages,creating possibilities for potentially worldwide applicability in sign language recognition tasks.