期刊文献+
共找到1,457篇文章
< 1 2 73 >
每页显示 20 50 100
SFC_DeepLabv3+:A Lightweight Grape Image Segmentation Method Based on Content-Guided Attention Fusion
1
作者 Yuchao Xia Jing Qiu 《Computers, Materials & Continua》 2025年第8期2531-2547,共17页
In recent years,fungal diseases affecting grape crops have attracted significant attention.Currently,the assessment of black rot severitymainly depends on the ratio of lesion area to leaf surface area.However,effectiv... In recent years,fungal diseases affecting grape crops have attracted significant attention.Currently,the assessment of black rot severitymainly depends on the ratio of lesion area to leaf surface area.However,effectively and accurately segmenting leaf lesions presents considerable challenges.Existing grape leaf lesion segmentationmodels have several limitations,such as a large number of parameters,long training durations,and limited precision in extracting small lesions and boundary details.To address these issues,we propose an enhanced DeepLabv3+model incorporating Strip Pooling,Content-Guided Fusion,and Convolutional Block Attention Module(SFC_DeepLabv3+),an enhanced lesion segmentation method based on DeepLabv3+.This approach uses the lightweight MobileNetv2 backbone to replace the original Xception,incorporates a lightweight convolutional block attention module,and introduces a content-guided feature fusion module to improve the detection accuracy of small lesions and blurred boundaries.Experimental results showthat the enhancedmodel achieves a mean Intersection overUnion(mIoU)of 90.98%,amean Pixel Accuracy(mPA)of 94.33%,and a precision of 95.84%.This represents relative gains of 2.22%,1.78%,and 0.89%respectively compared to the original model.Additionally,its complexity is significantly reduced without sacrificing performance,the parameter count is reduced to 6.27 M,a decrease of 88.5%compared to the original model,floating point of operations(GFLOPs)drops from 83.62 to 29.00 G,a reduction of 65.1%.Additionally,Frames Per Second(FPS)increases from 63.7 to 74.3 FPS,marking an improvement of 16.7%.Compared to other models,the improved architecture shows faster convergence and superior segmentation accuracy,making it highly suitable for applications in resource-constrained environments. 展开更多
关键词 Grape leaf leaf segmentation LIGHTWEIGHT feature fusion DeepLabv3+
在线阅读 下载PDF
Multi-Stage Hierarchical Feature Extraction for Efficient 3D Medical Image Segmentation
2
作者 Jion Kim Jayeon Kim Byeong-Seok Shin 《Computers, Materials & Continua》 2025年第6期5429-5443,共15页
Research has been conducted to reduce resource consumption in 3D medical image segmentation for diverse resource-constrained environments.However,decreasing the number of parameters to enhance computational efficiency... Research has been conducted to reduce resource consumption in 3D medical image segmentation for diverse resource-constrained environments.However,decreasing the number of parameters to enhance computational efficiency can also lead to performance degradation.Moreover,these methods face challenges in balancing global and local features,increasing the risk of errors in multi-scale segmentation.This issue is particularly pronounced when segmenting small and complex structures within the human body.To address this problem,we propose a multi-stage hierarchical architecture composed of a detector and a segmentor.The detector extracts regions of interest(ROIs)in a 3D image,while the segmentor performs segmentation in the extracted ROI.Removing unnecessary areas in the detector allows the segmentation to be performed on a more compact input.The segmentor is designed with multiple stages,where each stage utilizes different input sizes.It implements a stage-skippingmechanism that deactivates certain stages using the initial input size.This approach minimizes unnecessary computations on segmenting the essential regions to reduce computational overhead.The proposed framework preserves segmentation performance while reducing resource consumption,enabling segmentation even in resource-constrained environments. 展开更多
关键词 Volumetric segmentation 3D medical images computational resources
在线阅读 下载PDF
Advanced Brain Tumor Segmentation in Magnetic Resonance Imaging via 3D U-Net and Generalized Gaussian Mixture Model-Based Preprocessing
3
作者 Khalil Ibrahim Lairedj Zouaoui Chama +5 位作者 Amina Bagdaoui Samia Larguech Younes Menni Nidhal Becheikh Lioua Kolsi Badr M.Alshammari 《Computer Modeling in Engineering & Sciences》 2025年第8期2419-2443,共25页
Brain tumor segmentation from Magnetic Resonance Imaging(MRI)supports neurologists and radiologists in analyzing tumors and developing personalized treatment plans,making it a crucial yet challenging task.Supervised m... Brain tumor segmentation from Magnetic Resonance Imaging(MRI)supports neurologists and radiologists in analyzing tumors and developing personalized treatment plans,making it a crucial yet challenging task.Supervised models such as 3D U-Net perform well in this domain,but their accuracy significantly improves with appropriate preprocessing.This paper demonstrates the effectiveness of preprocessing in brain tumor segmentation by applying a pre-segmentation step based on the Generalized Gaussian Mixture Model(GGMM)to T1 contrastenhanced MRI scans from the BraTS 2020 dataset.The Expectation-Maximization(EM)algorithm is employed to estimate parameters for four tissue classes,generating a new pre-segmented channel that enhances the training and performance of the 3DU-Net model.The proposed GGMM+3D U-Net framework achieved a Dice coefficient of 0.88 for whole tumor segmentation,outperforming both the standard multiscale 3D U-Net(0.84)and MMU-Net(0.85).It also delivered higher Intersection over Union(IoU)scores compared to models trained without preprocessing or with simpler GMM-based segmentation.These results,supported by qualitative visualizations,suggest that GGMM-based preprocessing should be integrated into brain tumor segmentation pipelines to optimize performance. 展开更多
关键词 Magnetic resonance imaging(MRI) imaging technology GGMM EM algorithm 3D U-Net segmentation
在线阅读 下载PDF
Enhancing 3D U-Net with Residual and Squeeze-and-Excitation Attention Mechanisms for Improved Brain Tumor Segmentation in Multimodal MRI
4
作者 Yao-Tien Chen Nisar Ahmad Khursheed Aurangzeb 《Computer Modeling in Engineering & Sciences》 2025年第7期1197-1224,共28页
Accurate and efficient brain tumor segmentation is essential for early diagnosis,treatment planning,and clinical decision-making.However,the complex structure of brain anatomy and the heterogeneous nature of tumors pr... Accurate and efficient brain tumor segmentation is essential for early diagnosis,treatment planning,and clinical decision-making.However,the complex structure of brain anatomy and the heterogeneous nature of tumors present significant challenges for precise anomaly detection.While U-Net-based architectures have demonstrated strong performance in medical image segmentation,there remains room for improvement in feature extraction and localization accuracy.In this study,we propose a novel hybrid model designed to enhance 3D brain tumor segmentation.The architecture incorporates a 3D ResNet encoder known for mitigating the vanishing gradient problem and a 3D U-Net decoder.Additionally,to enhance the model’s generalization ability,Squeeze and Excitation attention mechanism is integrated.We introduce Gabor filter banks into the encoder to further strengthen the model’s ability to extract robust and transformation-invariant features from the complex and irregular shapes typical in medical imaging.This approach,which is not well explored in current U-Net-based segmentation frameworks,provides a unique advantage by enhancing texture-aware feature representation.Specifically,Gabor filters help extract distinctive low-level texture features,reducing the effects of texture interference and facilitating faster convergence during the early stages of training.Our model achieved Dice scores of 0.881,0.846,and 0.819 for Whole Tumor(WT),Tumor Core(TC),and Enhancing Tumor(ET),respectively,on the BraTS 2020 dataset.Cross-validation on the BraTS 2021 dataset further confirmed the model’s robustness,yielding Dice score values of 0.887 for WT,0.856 for TC,and 0.824 for ET.The proposed model outperforms several state-of-the-art existing models,particularly in accurately identifying small and complex tumor regions.Extensive evaluations suggest integrating advanced preprocessing with an attention-augmented hybrid architecture offers significant potential for reliable and clinically valuable brain tumor segmentation. 展开更多
关键词 3D MRI artificial intelligence deep learning AI in healthcare attention mechanism U-Net medical image analysis brain tumor segmentation BraTS 2021 BraTS 2020
暂未订购
慢性肾衰竭透析患者血清SP-D、PTX-3水平对合并细菌性肺炎的诊断效能
5
作者 邵珏 李金玉 +1 位作者 汪成军 张赟辉 《热带医学杂志》 2025年第4期506-510,共5页
目的探讨慢性肾衰竭(CRF)透析患者血清表面活性蛋白-D(SP-D)、正五聚蛋白3(PTX-3)水平对合并细菌性肺炎的诊断效能,为临床早期诊断和有效治疗提供新的思路和方法。方法选取2019年10月-2023年10月黄山市人民医院收治的102例慢性肾衰竭透... 目的探讨慢性肾衰竭(CRF)透析患者血清表面活性蛋白-D(SP-D)、正五聚蛋白3(PTX-3)水平对合并细菌性肺炎的诊断效能,为临床早期诊断和有效治疗提供新的思路和方法。方法选取2019年10月-2023年10月黄山市人民医院收治的102例慢性肾衰竭透析患者作为研究对象,根据是否合并细菌性肺炎分为合并细菌性肺炎组(n=43)和未合并细菌性肺炎组(n=59)。采用酶联免疫吸附法检测所有研究对象血清SP-D、PTX-3水平。采用受试者工作特征(ROC)曲线评估血清SP-D、PTX-3水平对CRF患者合并细菌性肺炎的诊断价值,采用多因素logistic回归分析探讨CRF患者合并细菌性肺炎的影响因素。结果合并细菌性肺炎组患者血清SP-D、PTX-3水平显著高于未合并细菌性肺炎组,差异均有统计学意义(t=23.473、22.563,P均<0.05)。血清SP-D、PTX-3诊断慢性肾衰竭透析患者合并细菌性肺炎的曲线下面积(AUC)分别为0.832(95%CI:0.787~0.879)、0.746(95%CI:0.701~0.796),两者联合(串联实验)诊断的AUC为0.902(95%CI:0.858~0.951)。合并细菌性肺炎组患者年龄≥60岁比例、住院时间、合并疾病(糖尿病)、透析时间≥1年比例均高于未合并细菌性肺炎组,差异均有统计学意义(P均<0.05)。二分类logistic逐步回归分析显示,年龄≥60岁(OR=1.791,95%CI:1.225~2.620)、合并糖尿病(OR=2.762,95%CI:1.324~5.760)、血清SP-D≥188.27 g/L(OR=4.651,95%CI:1.822~11.868)、血清PTX-3≥17.83 ng/mL(OR=3.554,95%CI:1.741~7.253)是慢性肾衰竭透析患者合并细菌性肺炎的危险因素(P均<0.05)。结论血清SP-D、PTX-3水平在慢性肾衰竭透析合并细菌性肺炎患者中呈高表达,可作为诊断慢性肾衰竭透析患者合并细菌性肺炎潜在的生物学指标,两者联合诊断的效能更高。 展开更多
关键词 慢性肾衰竭 透析 细菌性肺炎 表面活性蛋白-d 正五聚蛋白3
原文传递
甘露糖蛋白、半乳甘露聚糖和1-3-β-D葡聚糖联合检测对艾滋病合并马尔尼菲篮状菌病的诊断价值
6
作者 李小凤 张海燕 +1 位作者 何静 罗明 《中国热带医学》 北大核心 2025年第5期547-551,593,共6页
目的探讨甘露糖蛋白(mannoprotein,Mp1p)、半乳甘露聚糖(galactomannan,GM)和1-3-β-D葡聚糖(1-3-β-D glucan,BDG)单独和联合检测对艾滋病合并马尔尼菲篮状菌病(Talaromycosis marneffei,TSM)的诊断价值。方法收集291例艾滋病合并马尔... 目的探讨甘露糖蛋白(mannoprotein,Mp1p)、半乳甘露聚糖(galactomannan,GM)和1-3-β-D葡聚糖(1-3-β-D glucan,BDG)单独和联合检测对艾滋病合并马尔尼菲篮状菌病(Talaromycosis marneffei,TSM)的诊断价值。方法收集291例艾滋病合并马尔尼菲篮状菌住院患者和300例健康体检者外周血标本,检测Mp1p、GM和BDG并分析单独和联合检测诊断TSM的价值,采用ROC曲线分析Mp1p、GM、BDG和联合检测的诊断效能。结果在单独检测中,Mp1p、GM和BDG检测灵敏度和特异度之间差异有统计学意义(P<0.05),相较于GM和BDG,Mp1p的诊断效能最好,灵敏度和特异度最优。在两两联合检测中,Mp1p与GM组合灵敏度优于GM与BDG组合,差异有统计学意义(P<0.05);Mp1p与GM组合、Mp1p与BDG组合特异度优于GM与BDG组合,差异有统计学意义(P<0.05),Mp1p与GM组合的诊断效能最好。三者联合检测灵敏度优于两两联合检测,差异有统计学意义(P<0.05),Mp1p与GM组合、Mp1p与BDG组合特异度优于三者联合检测,差异有统计学意义(P<0.05)。Mp1p、GM、BDG检测阳性率分别在CD4^(+)T细胞计数≤100个/μL和>100个/μL患者中差异无统计学意义(P>0.05)。结论Mp1p、GM、BDG检测是艾滋病合并TSM早期辅助性诊断指标,其中Mp1p诊断效能优于GM和BDG,联合检测可提高诊断效能。 展开更多
关键词 甘露糖蛋白 半乳甘露聚糖 1-3-d葡聚糖 马尔尼菲篮状菌病 艾滋病
原文传递
Fluid-based moderate collision avoidance for UAV formation in 3-D low-altitude environments 被引量:1
7
作者 Menghua ZHANG Honglun WANG +5 位作者 Zhiyu LI Yanxiang WANG Xianglun ZHANG Qiang TANG Shichao MA Jianfa WU 《Chinese Journal of Aeronautics》 2025年第6期533-551,共19页
Aiming to address the Unmanned Aerial Vehicle(UAV) formation collision avoidance problem in Three-Dimensional(3-D) low-altitude environments where dense various obstacles exist, a fluid-based path planning framework n... Aiming to address the Unmanned Aerial Vehicle(UAV) formation collision avoidance problem in Three-Dimensional(3-D) low-altitude environments where dense various obstacles exist, a fluid-based path planning framework named the Formation Interfered Fluid Dynamical System(FIFDS) with Moderate Evasive Maneuver Strategy(MEMS) is proposed in this study.First, the UAV formation collision avoidance problem including quantifiable performance indexes is formulated. Second, inspired by the phenomenon of fluids continuously flowing while bypassing objects, the FIFDS for multiple UAVs is presented, which contains a Parallel Streamline Tracking(PST) method for formation keeping and the traditional IFDS for collision avoidance. Third, to rationally balance flight safety and collision avoidance cost, MEMS is proposed to generate moderate evasive maneuvers that match up with collision risks. Comprehensively containing the time and distance safety information, the 3-D dynamic collision regions are modeled for collision prediction. Then, the moderate evasive maneuver principle is refined, which provides criterions of the maneuver amplitude and direction. On this basis, an analytical parameter mapping mechanism is designed to online optimize IFDS parameters. Finally, the performance of the proposed method is validated by comparative simulation results and real flight experiments using fixed-wing UAVs. 展开更多
关键词 Unmanned aerial vehicle Formation collision avoidance:3-d low-altitude environments Interfered fluid dynamical system 3-d dynamic collision region
原文传递
新型5,6-二氢吡啶并[2,3-d]嘧啶-4,7(3H,8H)-二酮类衍生物的设计、合成及抗结核活性研究
8
作者 孙连奇 彭孝炯 +2 位作者 寇世博 易红 李卓荣 《中国药物化学杂志》 2025年第2期81-91,共11页
目的设计合成一系列新型嘧啶酮类衍生物,以期得到抗结核分枝杆菌敏感菌株H37Rv及耐药菌株14862活性都较好的新化合物。方法以氰基乙酸乙酯和硫脲为起始原料,通过三步或四步反应,得到目标化合物f1~f31。采用H37Rv对所有目标化合物进行抗... 目的设计合成一系列新型嘧啶酮类衍生物,以期得到抗结核分枝杆菌敏感菌株H37Rv及耐药菌株14862活性都较好的新化合物。方法以氰基乙酸乙酯和硫脲为起始原料,通过三步或四步反应,得到目标化合物f1~f31。采用H37Rv对所有目标化合物进行抗结核活性评价,并对其中活性较好的化合物进行抗耐药菌株14862的活性评价。采用Vero细胞进行安全性评价。结果与结论共合成了31个新化合物,其结构均经^(1)H-NMR、^(13)C-NMR和LC-MS谱确证。其中化合物f11和f28对H37Rv的MIC值分别为0.62μg·mL^(-1)和0.91μg·mL^(-1),表现出较强的抗结核活性,但对耐药菌株14862的活性弱于H37Rv。本研究进一步丰富了该系列化合物的构效关系,以期为后续新型嘧啶酮类化合物的设计提供参考。 展开更多
关键词 5 6-二氢吡啶并[2 3-d]嘧啶-4 7(3H 8H)-二酮类衍生物 抗结核分枝杆菌 结构修饰 构效关系
原文传递
混合感染中降钙素原联合1,3-β-D葡聚糖检测的诊断价值分析
9
作者 邓承晓 《实验室检测》 2025年第13期63-65,共3页
目的分析血清降钙素原(PCT)联合1,3-β-D葡聚糖检测对重症监护病房(ICU)患者混合感染的诊断价值。方法选择2023年10月—2024年10月本院ICU收治的237例疑似混合感染患者作为研究对象。根据实验室检查结果分为真菌感染组(n=66)、细菌感染... 目的分析血清降钙素原(PCT)联合1,3-β-D葡聚糖检测对重症监护病房(ICU)患者混合感染的诊断价值。方法选择2023年10月—2024年10月本院ICU收治的237例疑似混合感染患者作为研究对象。根据实验室检查结果分为真菌感染组(n=66)、细菌感染组(n=103)和混合感染组(n=68)。检测并比较三组患者血清PCT和1,3-β-D葡聚糖水平。采用Logistic回归分析评估PCT与1,3-β-D葡聚糖水平与混合感染发生的相关性;绘制受试者工作特征(ROC)曲线,计算曲线下面积(AUC),评价单项及联合检测对混合感染的诊断效能。结果混合感染组血清PCT、1,3-β-D葡聚糖水平高于真菌感染组和细菌感染组(P<0.05)。Logistic回归显示,PCT、1,3-β-D葡聚糖水平升高是ICU患者发生混合感染的影响因素(P<0.05)。PCT、1,3-β-D葡聚糖及两者联合诊断发生混合感染的AUC分别为0.629、0.714、0.752,联合的AUC更高,其敏感度和特异度分别为72.06%、74.56%(P<0.05)。结论PCT联合1,3-β-D葡聚糖诊断ICU患者混合感染的效能更高,可通过上述指标水平分析混合感染的高风险人群。 展开更多
关键词 降钙素原 1 3-d葡聚糖 混合感染 细菌感染 病毒感染
暂未订购
Advancing Wound Filling Extraction on 3D Faces:An Auto-Segmentation and Wound Face Regeneration Approach
10
作者 Duong Q.Nguyen Thinh D.Le +2 位作者 Phuong D.Nguyen Nga T.K.Le H.Nguyen-Xuan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2197-2214,共18页
Facial wound segmentation plays a crucial role in preoperative planning and optimizing patient outcomes in various medical applications.In this paper,we propose an efficient approach for automating 3D facial wound seg... Facial wound segmentation plays a crucial role in preoperative planning and optimizing patient outcomes in various medical applications.In this paper,we propose an efficient approach for automating 3D facial wound segmentation using a two-stream graph convolutional network.Our method leverages the Cir3D-FaIR dataset and addresses the challenge of data imbalance through extensive experimentation with different loss functions.To achieve accurate segmentation,we conducted thorough experiments and selected a high-performing model from the trainedmodels.The selectedmodel demonstrates exceptional segmentation performance for complex 3D facial wounds.Furthermore,based on the segmentation model,we propose an improved approach for extracting 3D facial wound fillers and compare it to the results of the previous study.Our method achieved a remarkable accuracy of 0.9999993% on the test suite,surpassing the performance of the previous method.From this result,we use 3D printing technology to illustrate the shape of the wound filling.The outcomes of this study have significant implications for physicians involved in preoperative planning and intervention design.By automating facial wound segmentation and improving the accuracy ofwound-filling extraction,our approach can assist in carefully assessing and optimizing interventions,leading to enhanced patient outcomes.Additionally,it contributes to advancing facial reconstruction techniques by utilizing machine learning and 3D bioprinting for printing skin tissue implants.Our source code is available at https://github.com/SIMOGroup/WoundFilling3D. 展开更多
关键词 3D printing technology face reconstruction 3D segmentation 3D printed model
在线阅读 下载PDF
A Random Fusion of Mix 3D and Polar Mix to Improve Semantic Segmentation Performance in 3D Lidar Point Cloud
11
作者 Bo Liu Li Feng Yufeng Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期845-862,共18页
This paper focuses on the effective utilization of data augmentation techniques for 3Dlidar point clouds to enhance the performance of neural network models.These point clouds,which represent spatial information throu... This paper focuses on the effective utilization of data augmentation techniques for 3Dlidar point clouds to enhance the performance of neural network models.These point clouds,which represent spatial information through a collection of 3D coordinates,have found wide-ranging applications.Data augmentation has emerged as a potent solution to the challenges posed by limited labeled data and the need to enhance model generalization capabilities.Much of the existing research is devoted to crafting novel data augmentation methods specifically for 3D lidar point clouds.However,there has been a lack of focus on making the most of the numerous existing augmentation techniques.Addressing this deficiency,this research investigates the possibility of combining two fundamental data augmentation strategies.The paper introduces PolarMix andMix3D,two commonly employed augmentation techniques,and presents a new approach,named RandomFusion.Instead of using a fixed or predetermined combination of augmentation methods,RandomFusion randomly chooses one method from a pool of options for each instance or sample.This innovative data augmentation technique randomly augments each point in the point cloud with either PolarMix or Mix3D.The crux of this strategy is the random choice between PolarMix and Mix3Dfor the augmentation of each point within the point cloud data set.The results of the experiments conducted validate the efficacy of the RandomFusion strategy in enhancing the performance of neural network models for 3D lidar point cloud semantic segmentation tasks.This is achieved without compromising computational efficiency.By examining the potential of merging different augmentation techniques,the research contributes significantly to a more comprehensive understanding of how to utilize existing augmentation methods for 3D lidar point clouds.RandomFusion data augmentation technique offers a simple yet effective method to leverage the diversity of augmentation techniques and boost the robustness of models.The insights gained from this research can pave the way for future work aimed at developing more advanced and efficient data augmentation strategies for 3D lidar point cloud analysis. 展开更多
关键词 3D lidar point cloud data augmentation RandomFusion semantic segmentation
在线阅读 下载PDF
Drishti Paint 3.2:a new open-source tool for both 2D and 3D segmentation
12
作者 WANG Meng-Jun Ajay LIMAYE LU Jing 《古脊椎动物学报(中英文)》 CSCD 北大核心 2024年第4期313-320,共8页
X-ray computed tomography(CT)has been an important technology in paleontology for several decades.It helps researchers to acquire detailed anatomical structures of fossils non-destructively.Despite its widespread appl... X-ray computed tomography(CT)has been an important technology in paleontology for several decades.It helps researchers to acquire detailed anatomical structures of fossils non-destructively.Despite its widespread application,developing an efficient and user-friendly method for segmenting CT data continues to be a formidable challenge in the field.Most CT data segmentation software operates on 2D interfaces,which limits flexibility for real-time adjustments in 3D segmentation.Here,we introduce Curves Mode in Drishti Paint 3.2,an open-source tool for CT data segmentation.Drishti Paint 3.2 allows users to manually or semi-automatically segment the CT data in both 2D and 3D environments,providing a novel solution for revisualizing CT data in paleontological studies. 展开更多
关键词 X-ray computed tomography(CT) 2D and 3D segmentation 3D reconstruction Drishti Paint
在线阅读 下载PDF
SGT-Net: A Transformer-Based Stratified Graph Convolutional Network for 3D Point Cloud Semantic Segmentation
13
作者 Suyi Liu Jianning Chi +2 位作者 Chengdong Wu Fang Xu Xiaosheng Yu 《Computers, Materials & Continua》 SCIE EI 2024年第6期4471-4489,共19页
In recent years,semantic segmentation on 3D point cloud data has attracted much attention.Unlike 2D images where pixels distribute regularly in the image domain,3D point clouds in non-Euclidean space are irregular and... In recent years,semantic segmentation on 3D point cloud data has attracted much attention.Unlike 2D images where pixels distribute regularly in the image domain,3D point clouds in non-Euclidean space are irregular and inherently sparse.Therefore,it is very difficult to extract long-range contexts and effectively aggregate local features for semantic segmentation in 3D point cloud space.Most current methods either focus on local feature aggregation or long-range context dependency,but fail to directly establish a global-local feature extractor to complete the point cloud semantic segmentation tasks.In this paper,we propose a Transformer-based stratified graph convolutional network(SGT-Net),which enlarges the effective receptive field and builds direct long-range dependency.Specifically,we first propose a novel dense-sparse sampling strategy that provides dense local vertices and sparse long-distance vertices for subsequent graph convolutional network(GCN).Secondly,we propose a multi-key self-attention mechanism based on the Transformer to further weight augmentation for crucial neighboring relationships and enlarge the effective receptive field.In addition,to further improve the efficiency of the network,we propose a similarity measurement module to determine whether the neighborhood near the center point is effective.We demonstrate the validity and superiority of our method on the S3DIS and ShapeNet datasets.Through ablation experiments and segmentation visualization,we verify that the SGT model can improve the performance of the point cloud semantic segmentation. 展开更多
关键词 3D point cloud semantic segmentation long-range contexts global-local feature graph convolutional network dense-sparse sampling strategy
在线阅读 下载PDF
3D Instance Segmentation Using Deep Learning on RGB-D Indoor Data 被引量:1
14
作者 Siddiqui Muhammad Yasir Amin Muhammad Sadiq Hyunsik Ahn 《Computers, Materials & Continua》 SCIE EI 2022年第9期5777-5791,共15页
3D object recognition is a challenging task for intelligent and robot systems in industrial and home indoor environments.It is critical for such systems to recognize and segment the 3D object instances that they encou... 3D object recognition is a challenging task for intelligent and robot systems in industrial and home indoor environments.It is critical for such systems to recognize and segment the 3D object instances that they encounter on a frequent basis.The computer vision,graphics,and machine learning fields have all given it a lot of attention.Traditionally,3D segmentation was done with hand-crafted features and designed approaches that didn’t achieve acceptable performance and couldn’t be generalized to large-scale data.Deep learning approaches have lately become the preferred method for 3D segmentation challenges by their great success in 2D computer vision.However,the task of instance segmentation is currently less explored.In this paper,we propose a novel approach for efficient 3D instance segmentation using red green blue and depth(RGB-D)data based on deep learning.The 2D region based convolutional neural networks(Mask R-CNN)deep learning model with point based rending module is adapted to integrate with depth information to recognize and segment 3D instances of objects.In order to generate 3D point cloud coordinates(x,y,z),segmented 2D pixels(u,v)of recognized object regions in the RGB image are merged into(u,v)points of the depth image.Moreover,we conducted an experiment and analysis to compare our proposed method from various points of view and distances.The experimentation shows the proposed 3D object recognition and instance segmentation are sufficiently beneficial to support object handling in robotic and intelligent systems. 展开更多
关键词 Instance segmentation 3D object segmentation deep learning point cloud coordinates
在线阅读 下载PDF
(1-3)-β-D葡聚糖联合降钙素原、CD4^(+)T淋巴细胞多指标在艾滋病患者马尔尼菲篮状菌感染早期诊断临床研究 被引量:2
15
作者 黄强 王宇 +5 位作者 江渊 梁道斌 黄锐洁 秦小超 潘燕妮 和鹰 《中国真菌学杂志》 CSCD 2024年第1期21-24,29,共5页
目的探讨(1-3)-β-D葡聚糖联合降钙素原(procalcitonin,PCT)、CD4^(+)T淋巴细胞多指标在艾滋病患者马尔尼菲篮状菌感染早期诊断临床研究。方法回顾性选取我院2020年1月—2022年6月住院的120例艾滋病患者为研究对象。依据实验室结果,将... 目的探讨(1-3)-β-D葡聚糖联合降钙素原(procalcitonin,PCT)、CD4^(+)T淋巴细胞多指标在艾滋病患者马尔尼菲篮状菌感染早期诊断临床研究。方法回顾性选取我院2020年1月—2022年6月住院的120例艾滋病患者为研究对象。依据实验室结果,将其分为马尔尼菲篮状菌感染确诊组(血或组织液培育养出马尔尼菲篮状菌),简称A组(62例),及马尔尼菲篮状菌感染临床诊断组[根据临床症状、体征、血常规及(1-3)-β-D葡聚糖、PCT、CD4^(+)T淋巴细胞多指标诊断],简称B组(58例)。检测患者(1-3)-β-D葡聚糖、PCT、CD4^(+)T淋巴细胞的表达水平,采用受试者工作特征(receiver-operating characteristic,ROC)曲线下面积(area under the curve,AUC)评估上述指标联合检测对艾滋病患者感染马尔尼菲篮状菌的诊断效能。结果A组的(1-3)-β-D葡聚糖和PCT水平均高于B组,CD4^(+)T淋巴细胞个数低于B组(P<0.05);(1-3)-β-D葡聚糖、PCT、CD4^(+)T淋巴细胞联合检测的AUC为0.933,(1-3)-β-D葡聚糖单独检测的AUC是0.812,PCT单独检测的AUC为0.883,CD4^(+)T淋巴细胞单独检测的AUC是0.810,(1-3)-β-D葡聚糖、PCT和CD4^(+)T淋巴细胞联合检测的AUC皆优于三项单独检测,表明(1-3)-β-D葡聚糖、PCT和CD4^(+)T淋巴细胞联合检测的诊断价值皆优于单一指标诊断,且联合检测的特异度、约登指数分别为92.43%和0.580,均高于三项单独检测。结论(1-3)-β-D葡聚糖联合PCT和CD4^(+)T淋巴细胞多指标对艾滋病马尔尼菲篮状菌感染具有非常高的临床诊断价值,能够帮助医生分析出高危风险患者,及时制定治疗方案,同时也承担预后效果的判断依据,对治疗艾滋病马尔尼菲篮状菌感染具有非常重要的研究价值。 展开更多
关键词 (1-3)-β-d葡聚糖 PCT CD4^(+)T淋巴细胞 艾滋病 马尔尼菲篮状菌感染
暂未订购
老年COPD继发肺部真菌感染患者外周血(1-3)-β-D葡聚糖、淋巴细胞水平变化的临床意义 被引量:2
16
作者 吴迪 赵运胜 +1 位作者 张林光 李保林 《中南医学科学杂志》 2024年第6期1043-1045,1078,共4页
目的分析老年慢性阻塞性肺疾病(COPD)继发肺部真菌感染(PFI)患者外周血(1-3)-β-D葡聚糖、淋巴细胞水平变化的临床意义。方法选取老年COPD继发PFI患者108例(PFI组)和老年COPD未继发PFI患者80例(非PFI组)。分析PFI组痰液病原菌分布情况;... 目的分析老年慢性阻塞性肺疾病(COPD)继发肺部真菌感染(PFI)患者外周血(1-3)-β-D葡聚糖、淋巴细胞水平变化的临床意义。方法选取老年COPD继发PFI患者108例(PFI组)和老年COPD未继发PFI患者80例(非PFI组)。分析PFI组痰液病原菌分布情况;比较两组临床资料、外周血(1-3)-β-D葡聚糖、淋巴细胞亚群水平。分析COPD继发PFI的影响因素及(1-3)-β-D葡聚糖与淋巴细胞水平的相关性。结果PFI组患者痰液病原菌主要为曲霉菌、假丝酵母菌和白念珠菌。PFI组(1-3)-β-D葡聚糖、CD3^(+)CD8^(+)高于非PFI组,CD3^(+)CD4^(+)、CD3^(+)CD4^(+)/CD3^(+)CD8^(+)低于非PFI组(P<0.05)。外周血(1-3)-β-D葡聚糖与CD3^(+)CD4^(+)、CD3^(+)CD4^(+)/CD3^(+)CD8^(+)呈负相关,与CD3^(+)CD8^(+)呈正相关(P<0.001);(1-3)-β-D葡聚糖、CD3^(+)CD4^(+)、CD3^(+)CD4^(+)/CD3^(+)CD8^(+)均为老年COPD患者继发PFI的独立影响因素(P<0.05)。结论(1-3)-β-D葡聚糖、CD3^(+)CD4^(+)、CD3^(+)CD4^(+)/CD3^(+)CD8^(+)是老年COPD患者继发PFI的影响因素,可为其临床治疗提供参考。 展开更多
关键词 老年 COPD PFI (1-3)-β-d葡聚糖 淋巴细胞
暂未订购
小麦TaABI5-D3基因原核表达及多克隆抗体制备 被引量:3
17
作者 韩洋 韩冰 +1 位作者 邢燕平 杨燕 《生物工程学报》 CAS CSCD 北大核心 2024年第10期3619-3628,共10页
碱性亮氨酸拉链转录因子脱落酸不敏感蛋白5(abscisic acid-insensitive 5,ABI5)是脱落酸介导的种子萌发的关键调控因子,而TaABI5基因与小麦穗发芽密切相关。TaABI5的多拷贝基因成员TaABI5-D3具有编码完整TaABI5蛋白的能力。本研究通过... 碱性亮氨酸拉链转录因子脱落酸不敏感蛋白5(abscisic acid-insensitive 5,ABI5)是脱落酸介导的种子萌发的关键调控因子,而TaABI5基因与小麦穗发芽密切相关。TaABI5的多拷贝基因成员TaABI5-D3具有编码完整TaABI5蛋白的能力。本研究通过构建原核表达载体pET-28a-TaABI5-D3,并在大肠杆菌中进行表达,最终得到纯化的His-TaABI5-D3重组蛋白。该重组蛋白以包涵体的形式存在,最佳表达条件为16℃、0.6 mmol/LIPTG、150 r/min过夜诱导12 h。进一步将His-TaABI5-D3重组蛋白进行纯化后免疫Balb/c小鼠制备多克隆抗体,Western blotting结果显示抗体的特异性完好。该研究结果为进一步研究TaABI5蛋白在小麦籽粒中的功能奠定了基础。 展开更多
关键词 TaABI5-d3 原核表达 重组蛋白 多克隆抗体 小麦
原文传递
1例RHD-CE(3-7)-D基因重组与RHCE变异型患者的血清学与分子生物学分析 被引量:2
18
作者 唐炳娣 蔡仲仁 +1 位作者 邓泳诗 伍昌林 《分子诊断与治疗杂志》 2024年第6期1183-1186,1190,共5页
目的 研究分析1例Rh血型弱D、弱cE患者的血清学与分子生物学特征,为该类患者的临床安全输血提供实验依据。方法 采用微柱凝胶卡法对患者红细胞进行ABO、RhDCcEe抗原的鉴定,同时采用试管法进行血型复核,抗人球蛋白卡法筛查不规则抗体;采... 目的 研究分析1例Rh血型弱D、弱cE患者的血清学与分子生物学特征,为该类患者的临床安全输血提供实验依据。方法 采用微柱凝胶卡法对患者红细胞进行ABO、RhDCcEe抗原的鉴定,同时采用试管法进行血型复核,抗人球蛋白卡法筛查不规则抗体;采用PCR-SSP法对RhDCcEe(RhD、RhC、Rhc、RhE、Rhe)基因型进行检测;三代全长测序技术对RHD/RHCE基因序列进行测序分析。结果 微柱凝胶卡法鉴定ABO、RhD、RhCcEe血型抗原的结果为:A抗原(-)、B抗原(-)、RhD(1+)、RhC(4+)、Rhc(1+)、RhE(1+)、Rhe(4+)、对照孔(-);试管法ABO、RhD、RhCcEe抗原鉴定该患者表型为:A抗原(-)、B抗原(-)、RhD(w+)、RhC(4+)、Rhc(w+)、RhE(w+)、Rhe(4+),对照管(-);抗人球蛋白卡法筛查患者不规则抗体阴性;PCR-SSP法血型基因分型RhDCcEe结果:RhD(+)、RhC(+)、Rhc(+)、RhE(+)、Rhe(+);RHD/RHCE基因结果:RHD单倍体1为外显子1-10全缺失,而单倍体2为外显子RHD-CE基因重组融合,且确认其重组类型为RHD-CE(3-7)-D,起点在外显子2(g.20238-20312之间),终点在外显子8(g49184-50480之间),同时RHCE基因第6外显子存在新碱基点突变RHCE*cE(827C>A)。结论RHD-CE(3-7)-D基因重组融合与RHCE*cE(827C>A)新等位基因突变可能引起D、cE血型抗原弱表达,为临床安全输血提供了重要的实验数据支持。 展开更多
关键词 RhD/cE弱抗原 RHD-CE(3-7)-d重组 RHCE*cE(827C>A) 三代全长测序
暂未订购
基于改进Deeplabv 3+模型的遥感影像地物语义分割方法研究 被引量:2
19
作者 南国君 王敏 +2 位作者 都海波 谢枫 许水清 《控制与决策》 北大核心 2025年第2期423-431,共9页
面向电力自动化领域,针对在遥感影像关键地物信息提取过程中,地物类别分布不均衡和不同域场景风格差异较大带来提取效果一般的问题,采用一种改进Deeplabv 3+语义分割网络.首先,在主干网络ResNet 101中使用IBN模块,用于增强模型对风格差... 面向电力自动化领域,针对在遥感影像关键地物信息提取过程中,地物类别分布不均衡和不同域场景风格差异较大带来提取效果一般的问题,采用一种改进Deeplabv 3+语义分割网络.首先,在主干网络ResNet 101中使用IBN模块,用于增强模型对风格差异较大的遥感影像的泛化能力,同时为了进一步提高模型的分割精度,在网络中加入SE模块,加强重要的通道信息,缓解信息丢失问题;然后,损失函数使用Dice+Focal的联合损失函数,Dice Loss损失函数可缓解类别分布不均衡对小目标提取的影响,Focal Loss损失函数不仅可以使得模型更关注分类困难的目标,还可以改善Dice Loss造成的网络训练的不稳定.实验结果表明:所提出改进Deeplabv 3+与原Deeplabv 3+模型相比,将F 1-Score提高了7.78%,Intersection over Union提高了5.78%;与其他主流语义分割模型(包括FCN、UNet、SegNet)相比,所提出改进Deeplabv 3+在地物提取中实现了更好的分割精度. 展开更多
关键词 语义分割 Deeplabv 3+ IBN模型 遥感影像 损失函数 地物提取
原文传递
Semantic segmentation method of road scene based on Deeplabv3+ and attention mechanism 被引量:7
20
作者 BAI Yanqiong ZHENG Yufu TIAN Hong 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第4期412-422,共11页
In the study of automatic driving,understanding the road scene is a key to improve driving safety.The semantic segmentation method could divide the image into different areas associated with semantic categories in acc... In the study of automatic driving,understanding the road scene is a key to improve driving safety.The semantic segmentation method could divide the image into different areas associated with semantic categories in accordance with the pixel level,so as to help vehicles to perceive and obtain the surrounding road environment information,which would improve driving safety.Deeplabv3+is the current popular semantic segmentation model.There are phenomena that small targets are missed and similar objects are easily misjudged during its semantic segmentation tasks,which leads to rough segmentation boundary and reduces semantic accuracy.This study focuses on the issue,based on the Deeplabv3+network structure and combined with the attention mechanism,to increase the weight of the segmentation area,and then proposes an improved Deeplabv3+fusion attention mechanism for road scene semantic segmentation method.First,a group of parallel position attention module and channel attention module are introduced on the Deeplabv3+encoding end to capture more spatial context information and high-level semantic information.Then,an attention mechanism is introduced to restore the spatial detail information,and the data shall be normalized in order to accelerate the convergence speed of the model at the decoding end.The effects of model segmentation with different attention-introducing mechanisms are compared and tested on CamVid and Cityscapes datasets.The experimental results show that the mean Intersection over Unons of the improved model segmentation accuracies on the two datasets are boosted by 6.88%and 2.58%,respectively,which is better than using Deeplabv3+.This method does not significantly increase the amount of network calculation and complexity,and has a good balance of speed and accuracy. 展开更多
关键词 autonomous driving road scene semantic segmentation Deeplabv3+ attention mechanism
在线阅读 下载PDF
上一页 1 2 73 下一页 到第
使用帮助 返回顶部